Not enough data to create a plot.
Try a different view from the menu above.
Cai, Pinlong
TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation Models
Zhang, Siyao, Fu, Daocheng, Zhang, Zhao, Yu, Bin, Cai, Pinlong
With the promotion of chatgpt to the public, Large language models indeed showcase remarkable common sense, reasoning, and planning skills, frequently providing insightful guidance. These capabilities hold significant promise for their application in urban traffic management and control. However, LLMs struggle with addressing traffic issues, especially processing numerical data and interacting with simulations, limiting their potential in solving traffic-related challenges. In parallel, specialized traffic foundation models exist but are typically designed for specific tasks with limited input-output interactions. Combining these models with LLMs presents an opportunity to enhance their capacity for tackling complex traffic-related problems and providing insightful suggestions. To bridge this gap, we present TrafficGPT, a fusion of ChatGPT and traffic foundation models. This integration yields the following key enhancements: 1) empowering ChatGPT with the capacity to view, analyze, process traffic data, and provide insightful decision support for urban transportation system management; 2) facilitating the intelligent deconstruction of broad and complex tasks and sequential utilization of traffic foundation models for their gradual completion; 3) aiding human decision-making in traffic control through natural language dialogues; and 4) enabling interactive feedback and solicitation of revised outcomes. By seamlessly intertwining large language model and traffic expertise, TrafficGPT not only advances traffic management but also offers a novel approach to leveraging AI capabilities in this domain. The TrafficGPT demo can be found in https://github.com/lijlansg/TrafficGPT.git.
TrafficMCTS: A Closed-Loop Traffic Flow Generation Framework with Group-Based Monte Carlo Tree Search
Wen, Licheng, Fu, Ze, Cai, Pinlong, Fu, Daocheng, Mao, Song, Shi, Botian
Digital twins for intelligent transportation systems are currently attracting great interests, in which generating realistic, diverse, and human-like traffic flow in simulations is a formidable challenge. Current approaches often hinge on predefined driver models, objective optimization, or reliance on pre-recorded driving datasets, imposing limitations on their scalability, versatility, and adaptability. In this paper, we introduce TrafficMCTS, an innovative framework that harnesses the synergy of groupbased Monte Carlo tree search (MCTS) and Social Value Orientation (SVO) to engender a multifaceted traffic flow replete with varying driving styles and cooperative tendencies. Anchored by a closed-loop architecture, our framework enables vehicles to dynamically adapt to their environment in real time, and ensure feasible collision-free trajectories. Through comprehensive comparisons with state-of-the-art methods, we illuminate the advantages of our approach in terms of computational efficiency, planning success rate, intent completion time, and diversity metrics. Besides, we simulate highway and roundabout scenarios to illustrate the effectiveness of the proposed framework and highlight its ability to induce diverse social behaviors within the traffic flow. Finally, we validate the scalability of TrafficMCTS by showcasing its prowess in simultaneously mass vehicles within a sprawling road network, cultivating a landscape of traffic flow that mirrors the intricacies of human behavior.
EnsembleFollower: A Hybrid Car-Following Framework Based On Reinforcement Learning and Hierarchical Planning
Han, Xu, Chen, Xianda, Zhu, Meixin, Cai, Pinlong, Zhou, Jianshan, Chu, Xiaowen
Car-following models have made significant contributions to our understanding of longitudinal driving behavior. However, they often exhibit limited accuracy and flexibility, as they cannot fully capture the complexity inherent in car-following processes, or may falter in unseen scenarios due to their reliance on confined driving skills present in training data. It is worth noting that each car-following model possesses its own strengths and weaknesses depending on specific driving scenarios. Therefore, we propose EnsembleFollower, a hierarchical planning framework for achieving advanced human-like car-following. The EnsembleFollower framework involves a high-level Reinforcement Learning-based agent responsible for judiciously managing multiple low-level car-following models according to the current state, either by selecting an appropriate low-level model to perform an action or by allocating different weights across all low-level components. Moreover, we propose a jerk-constrained kinematic model for more convincing car-following simulations. We evaluate the proposed method based on real-world driving data from the HighD dataset. The experimental results illustrate that EnsembleFollower yields improved accuracy of human-like behavior and achieves effectiveness in combining hybrid models, demonstrating that our proposed framework can handle diverse car-following conditions by leveraging the strengths of various low-level models.
LimSim: A Long-term Interactive Multi-scenario Traffic Simulator
Wen, Licheng, Fu, Daocheng, Mao, Song, Cai, Pinlong, Dou, Min, Li, Yikang, Qiao, Yu
With the growing popularity of digital twin and autonomous driving in transportation, the demand for simulation systems capable of generating high-fidelity and reliable scenarios is increasing. Existing simulation systems suffer from a lack of support for different types of scenarios, and the vehicle models used in these systems are too simplistic. Thus, such systems fail to represent driving styles and multi-vehicle interactions, and struggle to handle corner cases in the dataset. In this paper, we propose LimSim, the Long-term Interactive Multi-scenario traffic Simulator, which aims to provide a long-term continuous simulation capability under the urban road network. LimSim can simulate fine-grained dynamic scenarios and focus on the diverse interactions between multiple vehicles in the traffic flow. This paper provides a detailed introduction to the framework and features of the LimSim, and demonstrates its performance through case studies and experiments. LimSim is now open source on GitHub: https://www.github.com/PJLab-ADG/LimSim .
Drive Like a Human: Rethinking Autonomous Driving with Large Language Models
Fu, Daocheng, Li, Xin, Wen, Licheng, Dou, Min, Cai, Pinlong, Shi, Botian, Qiao, Yu
In this paper, we explore the potential of using a large language model (LLM) to understand the driving environment in a human-like manner and analyze its ability to reason, interpret, and memorize when facing complex scenarios. We argue that traditional optimization-based and modular autonomous driving (AD) systems face inherent performance limitations when dealing with long-tail corner cases. To address this problem, we propose that an ideal AD system should drive like a human, accumulating experience through continuous driving and using common sense to solve problems. To achieve this goal, we identify three key abilities necessary for an AD system: reasoning, interpretation, and memorization. We demonstrate the feasibility of employing an LLM in driving scenarios by building a closed-loop system to showcase its comprehension and environment-interaction abilities. Our extensive experiments show that the LLM exhibits the impressive ability to reason and solve long-tailed cases, providing valuable insights for the development of human-like autonomous driving.
Human-like Decision-making at Unsignalized Intersection using Social Value Orientation
Tong, Yan, Wen, Licheng, Cai, Pinlong, Fu, Daocheng, Mao, Song, Li, Yikang
With the commercial application of automated vehicles (AVs), the sharing of roads between AVs and human-driven vehicles (HVs) becomes a common occurrence in the future. While research has focused on improving the safety and reliability of autonomous driving, it's also crucial to consider collaboration between AVs and HVs. Human-like interaction is a required capability for AVs, especially at common unsignalized intersections, as human drivers of HVs expect to maintain their driving habits for inter-vehicle interactions. This paper uses the social value orientation (SVO) in the decision-making of vehicles to describe the social interaction among multiple vehicles. Specifically, we define the quantitative calculation of the conflict-involved SVO at unsignalized intersections to enhance decision-making based on the reinforcement learning method. We use naturalistic driving scenarios with highly interactive motions for performance evaluation of the proposed method. Experimental results show that SVO is more effective in characterizing inter-vehicle interactions than conventional motion state parameters like velocity, and the proposed method can accurately reproduce naturalistic driving trajectories compared to behavior cloning.
Bringing Diversity to Autonomous Vehicles: An Interpretable Multi-vehicle Decision-making and Planning Framework
Wen, Licheng, Cai, Pinlong, Fu, Daocheng, Mao, Song, Li, Yikang
With the development of autonomous driving, it is becoming increasingly common for autonomous vehicles (AVs) and human-driven vehicles (HVs) to travel on the same roads. Existing single-vehicle planning algorithms on board struggle to handle sophisticated social interactions in the real world. Decisions made by these methods are difficult to understand for humans, raising the risk of crashes and making them unlikely to be applied in practice. Moreover, vehicle flows produced by open-source traffic simulators suffer from being overly conservative and lacking behavioral diversity. We propose a hierarchical multi-vehicle decision-making and planning framework with several advantages. The framework jointly makes decisions for all vehicles within the flow and reacts promptly to the dynamic environment through a high-frequency planning module. The decision module produces interpretable action sequences that can explicitly communicate self-intent to the surrounding HVs. We also present the cooperation factor and trajectory weight set, bringing diversity to autonomous vehicles in traffic at both the social and individual levels. The superiority of our proposed framework is validated through experiments with multiple scenarios, and the diverse behaviors in the generated vehicle trajectories are demonstrated through closed-loop simulations.