Goto

Collaborating Authors

 Cai, Hengrui


CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

arXiv.org Machine Learning

Personalized medicine, a paradigm of medicine tailored to a patient's characteristics, is an increasingly attractive field in health care. An important goal of personalized medicine is to identify a subgroup of patients, based on baseline covariates, that benefits more from the targeted treatment than other comparative treatments. Most of the current subgroup identification methods only focus on obtaining a subgroup with an enhanced treatment effect without paying attention to subgroup size. Yet, a clinically meaningful subgroup learning approach should identify the maximum number of patients who can benefit from the better treatment. In this paper, we present an optimal subgroup selection rule (SSR) that maximizes the number of selected patients, and in the meantime, achieves the pre-specified clinically meaningful mean outcome, such as the average treatment effect. We derive two equivalent theoretical forms of the optimal SSR based on the contrast function that describes the treatment-covariates interaction in the outcome. We further propose a ConstrAined PolIcy Tree seArch aLgorithm (CAPITAL) to find the optimal SSR within the interpretable decision tree class. The proposed method is flexible to handle multiple constraints that penalize the inclusion of patients with negative treatment effects, and to address time to event data using the restricted mean survival time as the clinically interesting mean outcome. Extensive simulations, comparison studies, and real data applications are conducted to demonstrate the validity and utility of our method.


Periodic-GP: Learning Periodic World with Gaussian Process Bandits

arXiv.org Artificial Intelligence

We consider the sequential decision optimization on the periodic environment, that occurs in a wide variety of real-world applications when the data involves seasonality, such as the daily demand of drivers in ride-sharing and dynamic traffic patterns in transportation. In this work, we focus on learning the stochastic periodic world by leveraging this seasonal law. To deal with the general action space, we use the bandit based on Gaussian process (GP) as the base model due to its flexibility and generality, and propose the Periodic-GP method with a temporal periodic kernel based on the upper confidence bound. Theoretically, we provide a new regret bound of the proposed method, by explicitly characterizing the periodic kernel in the periodic stationary model. Empirically, the proposed algorithm significantly outperforms the existing methods in both synthetic data experiments and a real data application on Madrid traffic pollution.


Calibrated Optimal Decision Making with Multiple Data Sources and Limited Outcome

arXiv.org Machine Learning

We consider the optimal decision-making problem in a primary sample of interest with multiple auxiliary sources available. The outcome of interest is limited in the sense that it is only observed in the primary sample. In reality, such multiple data sources may belong to different populations and thus cannot be combined directly. This paper proposes a novel calibrated optimal decision rule (CODR) to address the limited outcome, by leveraging the shared pattern in multiple data sources. Under a mild and testable assumption that the conditional means of intermediate outcomes in different samples are equal given baseline covariates and the treatment information, we can show that the calibrated mean outcome of interest under the CODR is unbiased and more efficient than using the primary sample solely. Extensive experiments on simulated datasets demonstrate empirical validity and improvement of the proposed CODR, followed by a real application on the MIMIC-III as the primary sample with auxiliary data from eICU.


GEAR: On Optimal Decision Making with Auxiliary Data

arXiv.org Machine Learning

Personalized optimal decision making, finding the optimal decision rule (ODR) based on individual characteristics, has attracted increasing attention recently in many fields, such as education, economics, and medicine. Current ODR methods usually require the primary outcome of interest in samples for assessing treatment effects, namely the experimental sample. However, in many studies, treatments may have a long-term effect, and as such the primary outcome of interest cannot be observed in the experimental sample due to the limited duration of experiments, which makes the estimation of ODR impossible. This paper is inspired to address this challenge by making use of an auxiliary sample to facilitate the estimation of ODR in the experimental sample. We propose an auGmented inverse propensity weighted Experimental and Auxiliary sample-based decision Rule (GEAR) by maximizing the augmented inverse propensity weighted value estimator over a class of decision rules using the experimental sample, with the primary outcome being imputed based on the auxiliary sample. The asymptotic properties of the proposed GEAR estimators and their associated value estimators are established. Simulation studies are conducted to demonstrate its empirical validity with a real AIDS application.


Deep Jump Q-Evaluation for Offline Policy Evaluation in Continuous Action Space

arXiv.org Machine Learning

We consider off-policy evaluation (OPE) in continuous action domains, such as dynamic pricing and personalized dose finding. In OPE, one aims to learn the value under a new policy using historical data generated by a different behavior policy. Most existing works on OPE focus on discrete action domains. To handle continuous action space, we develop a brand-new deep jump Q-evaluation method for OPE. The key ingredient of our method lies in adaptively discretizing the action space using deep jump Q-learning. This allows us to apply existing OPE methods in discrete domains to handle continuous actions. Our method is further justified by theoretical results, synthetic and real datasets.