Plotting

 Bryant, Michael


Oogway: Designing, Implementing, and Testing an AUV for RoboSub 2023

arXiv.org Artificial Intelligence

The Duke Robotics Club is proud to present our robot for the 2023 RoboSub Competition: Oogway. Oogway marks one of the largest design overhauls in club history. Beyond a revamped formfactor, some of Oogway's notable features include all-new computer vision software, advanced sonar integration, novel acoustics hardware processing, and upgraded stereoscopic cameras. Oogway was built on the principle of independent, well-integrated, and reliable subsystems. Individual components and subsystems were tested and designed separately. Oogway's most advanced capabilities are a result of the tight integration between these subsystems. Such examples include sonar-assisted computer vision algorithms and robot-agnostic controls configured in part through the robot's 3D model. The success of constructing and testing Oogway in under 2 year's time can be attributed to 20+ contributing club members, supporters within Duke's Pratt School of Engineering, and outside sponsors.


Technical Design Review of Duke Robotics Club's Oogway: An AUV for RoboSub 2024

arXiv.org Artificial Intelligence

The Duke Robotics Club is proud to present our robot for the 2024 RoboSub Competition: Oogway. Now in its second year, Oogway has been dramatically upgraded in both its capabilities and reliability. Oogway was built on the principle of independent, well-integrated, and reliable subsystems. Individual components and subsystems were tested and designed separately. Oogway's most advanced capabilities are a result of the tight integration between these subsystems. Such examples include a re-envisioned controls system, an entirely new electrical stack, advanced sonar integration, additional cameras and system monitoring, a new marker dropper, and a watertight capsule mechanism. These additions enabled Oogway to prequalify for Robosub 2024.


Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes

Neural Information Processing Systems

Variational methods provide a computationally scalable alternative to Monte Carlo methods for large-scale, Bayesian nonparametric learning. In practice, however, conventional batch and online variational methods quickly become trapped in local optima. In this paper, we consider a nonparametric topic model based on the hierarchical Dirichlet process (HDP), and develop a novel online variational inference algorithm based on split-merge topic updates. We derive a simpler and faster variational approximation of the HDP, and show that by intelligently splitting and merging components of the variational posterior, we can achieve substantially better predictions of test data than conventional online and batch variational algorithms. For streaming analysis of large datasets where batch analysis is infeasible, we show that our split-merge updates better capture the nonparametric properties of the underlying model, allowing continual learning of new topics.