Goto

Collaborating Authors

 Bronstein, Michael


Weisfeiler and Lehman Go Cellular: CW Networks

arXiv.org Machine Learning

Graph Neural Networks (GNNs) are limited in their expressive power, struggle with long-range interactions and lack a principled way to model higher-order structures. These problems can be attributed to the strong coupling between the computational graph and the input graph structure. The recently proposed Message Passing Simplicial Networks naturally decouple these elements by performing message passing on the clique complex of the graph. Nevertheless, these models are severely constrained by the rigid combinatorial structure of Simplicial Complexes (SCs). In this work, we extend recent theoretical results on SCs to regular Cell Complexes, topological objects that flexibly subsume SCs and graphs. We show that this generalisation provides a powerful set of graph ``lifting'' transformations, each leading to a unique hierarchical message passing procedure. The resulting methods, which we collectively call CW Networks (CWNs), are strictly more powerful than the WL test and, in certain cases, not less powerful than the 3-WL test. In particular, we demonstrate the effectiveness of one such scheme, based on rings, when applied to molecular graph problems. The proposed architecture benefits from provably larger expressivity than commonly used GNNs, principled modelling of higher-order signals and from compressing the distances between nodes. We demonstrate that our model achieves state-of-the-art results on a variety of molecular datasets.


SIGN: Scalable Inception Graph Neural Networks

arXiv.org Machine Learning

Graph representation learning has recently been applied to a broad spectrum of problems ranging from computer graphics and chemistry to high energy physics and social media. The popularity of graph neural networks has sparked interest, both in academia and in industry, in developing methods that scale to very large graphs such as Facebook or Twitter social networks. In most of these approaches, the computational cost is alleviated by a sampling strategy retaining a subset of node neighbors or subgraphs at training time. In this paper we propose a new, efficient and scalable graph deep learning architecture which sidesteps the need for graph sampling by using graph convolutional filters of different size that are amenable to efficient precomputation, allowing extremely fast training and inference. Our architecture allows using different local graph operators (e.g. motif-induced adjacency matrices or Personalized Page Rank diffusion matrix) to best suit the task at hand. We conduct extensive experimental evaluation on various open benchmarks and show that our approach is competitive with other state-of-the-art architectures, while requiring a fraction of the training and inference time. Moreover, we obtain state-of-the-art results on ogbn-papers100M, the largest public graph dataset, with over 110 million nodes and 1.5 billion edges.


Temporal Graph Networks for Deep Learning on Dynamic Graphs

arXiv.org Machine Learning

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.


Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline

arXiv.org Machine Learning

Recommender systems constitute the core engine of most social network platforms nowadays, aiming to maximize user satisfaction along with other key business objectives. Twitter is no exception. Despite the fact that Twitter data has been extensively used to understand socioeconomic and political phenomena and user behaviour, the implicit feedback provided by users on Tweets through their engagements on the Home Timeline has only been explored to a limited extent. At the same time, there is a lack of large-scale public social network datasets that would enable the scientific community to both benchmark and build more powerful and comprehensive models that tailor content to user interests. By releasing an original dataset of 160 million Tweets along with engagement information, Twitter aims to address exactly that. During this release, special attention is drawn on maintaining compliance with existing privacy laws. Apart from user privacy, this paper touches on the key challenges faced by researchers and professionals striving to predict user engagements. It further describes the key aspects of the RecSys 2020 Challenge that was organized by ACM RecSys in partnership with Twitter using this dataset.


Graph signal processing for machine learning: A review and new perspectives

arXiv.org Machine Learning

The effective representation, processing, analysis, and visualization of large-scale structured data, especially those related to complex domains such as networks and graphs, are one of the key questions in modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models and algorithms that aims at handling data supported on graphs, opens new paths of research to address this challenge. In this article, we review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms. In particular, our discussion focuses on the following three aspects: exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability. Furthermore, we provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of complex data analysis in the modern age.


Learning shape correspondence with anisotropic convolutional neural networks

Neural Information Processing Systems

Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to non-Euclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks. Papers published at the Neural Information Processing Systems Conference.


ncRNA Classification with Graph Convolutional Networks

arXiv.org Machine Learning

Non-coding RNA (ncRNA) are RNA sequences which don't code for a gene but instead carry important biological functions. The task of ncRNA classification consists in classifying a given ncRNA sequence into its family. While it has been shown that the graph structure of an ncRNA sequence folding is of great importance for the prediction of its family, current methods make use of machine learning classifiers on hand-crafted graph features. We improve on the state-of-the-art for this task with a graph convolutional network model which achieves an accuracy of 85.73% and an F1-score of 85.61% over 13 classes. Moreover, our model learns in an end-to-end fashion from the raw RNA graphs and removes the need for expensive feature extraction. To the best of our knowledge, this also represents the first successful application of graph convolutional networks to RNA folding data.


Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation

arXiv.org Artificial Intelligence

Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models were among the first attempts to create compact representations for such shapes; despite their effectiveness and simplicity, such models have limited representation power due to their linear formulation. Recently, non-linear learnable methods have been proposed, although most of them resort to intermediate representations, such as 3D grids of voxels or 2D views. In this paper, we introduce a convolutional mesh autoencoder and a GAN architecture based on the spiral convolutional operator, acting directly on the mesh and leveraging its underlying geometric structure. We provide an analysis of our convolution operator and demonstrate state-of-the-art results on 3D shape datasets compared to the linear Morphable Model and the recently proposed COMA model.


Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks

Neural Information Processing Systems

Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local stationary structures on user/item graphs, and the number of parameters to learn is linear w.r.t. the number of users and items. We propose a novel approach to overcome these limitations by using geometric deep learning on graphs. Our matrix completion architecture combines a novel multi-graph convolutional neural network that can learn meaningful statistical graph-structured patterns from users and items, and a recurrent neural network that applies a learnable diffusion on the score matrix. Our neural network system is computationally attractive as it requires a constant number of parameters independent of the matrix size. We apply our method on several standard datasets, showing that it outperforms state-of-the-art matrix completion techniques.


Learning shape correspondence with anisotropic convolutional neural networks

Neural Information Processing Systems

Convolutional neural networks have achieved extraordinary results in many computer vision and pattern recognition applications; however, their adoption in the computer graphics and geometry processing communities is limited due to the non-Euclidean structure of their data. In this paper, we propose Anisotropic Convolutional Neural Network (ACNN), a generalization of classical CNNs to non-Euclidean domains, where classical convolutions are replaced by projections over a set of oriented anisotropic diffusion kernels. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes, a fundamental problem in geometry processing, arising in a wide variety of applications. We tested ACNNs performance in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks.