Plotting

 Brill, Markus


The Price of Neutrality for the Ranked Pairs Method

AAAI Conferences

The complexity of the winner determination problem has been studied for almost all common voting rules. A notable exception, possibly caused by some confusion regarding its exact definition, is the method of ranked pairs. The original version of the method, due to Tideman, yields a social preference function that is irresolute and neutral. A variant introduced subsequently uses an exogenously given tie-breaking rule and therefore fails neutrality. The latter variant is the one most commonly studied in the area of computational social choice, and it is easy to see that its winner determination problem is computationally tractable. We show that by contrast, computing the set of winners selected by Tideman's original ranked pairs method is NP-complete, thus revealing a trade-off between tractability and neutrality. In addition, several known results concerning the hardness of manipulation and the complexity of computing possible and necessary winners are shown to follow as corollaries from our findings.


Bypassing Combinatorial Protections: Polynomial-Time Algorithms for Single-Peaked Electorates

AAAI Conferences

For many election systems, bribery (and related) attacks have been shown NP-hard using constructions on combinatorially rich structures such as partitions and covers. It is important to learn how robust these hardness protection results are, in order to find whether they can be relied on in practice. This paper shows that for voters who follow the most central political-science model of electorates — single-peaked preferences — those protections vanish. By using single-peaked preferences to simplify combinatorial covering challenges, we show that NP-hard bribery problems — including those for Kemeny and Llull elections- — fall to polynomial time. By using single-peaked preferences to simplify combinatorial partition challenges, we show that NP-hard partition-of-voters problems fall to polynomial time. We furthermore show that for single-peaked electorates, the winner problems for Dodgson and Kemeny elections, though Θ 2 p -complete in the general case, fall to polynomial time. And we completely classify the complexity of weighted coalition manipulation for scoring protocols in single-peaked electorates.