Not enough data to create a plot.
Try a different view from the menu above.
Bretl, Timothy
Efficient Extrinsic Self-Calibration of Multiple IMUs using Measurement Subset Selection
Lee, Jongwon, Hanley, David, Bretl, Timothy
This paper addresses the problem of choosing a sparse subset of measurements for quick calibration parameter estimation. A standard solution to this is selecting a measurement only if its utility -- the difference between posterior (with the measurement) and prior information (without the measurement) -- exceeds some threshold. Theoretically, utility, a function of the parameter estimate, should be evaluated at the estimate obtained with all measurements selected so far, hence necessitating a recalibration with each new measurement. However, we hypothesize that utility is insensitive to changes in the parameter estimate for many systems of interest, suggesting that evaluating utility at some initial parameter guess would yield equivalent results in practice. We provide evidence supporting this hypothesis for extrinsic calibration of multiple inertial measurement units (IMUs), showing the reduction in calibration time by two orders of magnitude by forgoing recalibration for each measurement.
The Use of Multi-Scale Fiducial Markers To Aid Takeoff and Landing Navigation by Rotorcraft
Lee, Jongwon, Choi, Su Yeon, Bretl, Timothy
This paper quantifies the performance of visual SLAM that leverages multi-scale fiducial markers (i.e., artificial landmarks that can be detected at a wide range of distances) to show its potential for reliable takeoff and landing navigation in rotorcraft. Prior work has shown that square markers with a black-and-white pattern of grid cells can be used to improve the performance of visual SLAM with color cameras. We extend this prior work to allow nested marker layouts. We evaluate performance during semi-autonomous takeoff and landing operations in a variety of environmental conditions by a DJI Matrice 300 RTK rotorcraft with two FLIR Blackfly color cameras, using RTK GNSS to obtain ground truth pose estimates. Performance measures include absolute trajectory error and the fraction of the number of estimated poses to the total frame. We release all of our results -- our dataset and the code of the implementation of the visual SLAM with fiducial markers -- to the public as open-source.
The Impact of Time Step Frequency on the Realism of Robotic Manipulation Simulation for Objects of Different Scales
Ta, Minh Q., Dinkel, Holly, Abdul-Rashid, Hameed, Dai, Yangfei, Myers, Jessica, Chen, Tan, Geng, Junyi, Bretl, Timothy
Abstract--This work evaluates the impact of time step frequency and component scale on robotic manipulation simulation accuracy. Increasing the time step frequency for small-scale objects is shown to improve simulation accuracy. This simulation, demonstrating pre-assembly part picking for two object geometries, serves as a starting point for discussing how to improve Sim2Real transfer in robotic assembly processes. Manipulation simulation is valuable input to the design of planning and control algorithms for real applications on robot hardware. Information about the behavior of objects in contact with each other, such as gripper fingers with a grasped component or the component with the environment, is important in the deployment of manufacturing and maintenance robots [1], [2].
Dynamic Manipulation of a Deformable Linear Object: Simulation and Learning
Chen, Qi Jing, Bretl, Timothy, Vuong, Nghia, Pham, Quang-Cuong
We show that it is possible to learn an open-loop policy in simulation for the dynamic manipulation of a deformable linear object (DLO) -- e.g., a rope, wire, or cable -- that can be executed by a real robot without additional training. Our method is enabled by integrating an existing state-of-the-art DLO model (Discrete Elastic Rods) with MuJoCo, a robot simulator. We describe how this integration was done, check that validation results produced in simulation match what we expect from analysis of the physics, and apply policy optimization to train an open-loop policy from data collected only in simulation that uses a robot arm to fling a wire precisely between two obstacles. This policy achieves a success rate of 76.7% when executed by a real robot in hardware experiments without additional training on the real task.
Comparative Study of Visual SLAM-Based Mobile Robot Localization Using Fiducial Markers
Lee, Jongwon, Choi, Su Yeon, Hanley, David, Bretl, Timothy
This paper presents a comparative study of three modes for mobile robot localization based on visual SLAM using fiducial markers (i.e., square-shaped artificial landmarks with a black-and-white grid pattern): SLAM, SLAM with a prior map, and localization with a prior map. The reason for comparing the SLAM-based approaches leveraging fiducial markers is because previous work has shown their superior performance over feature-only methods, with less computational burden compared to methods that use both feature and marker detection without compromising the localization performance. The evaluation is conducted using indoor image sequences captured with a hand-held camera containing multiple fiducial markers in the environment. The performance metrics include absolute trajectory error and runtime for the optimization process per frame. In particular, for the last two modes (SLAM and localization with a prior map), we evaluate their performances by perturbing the quality of prior map to study the extent to which each mode is tolerant to such perturbations. Hardware experiments show consistent trajectory error levels across the three modes, with the localization mode exhibiting the shortest runtime among them. Yet, with map perturbations, SLAM with a prior map maintains performance, while localization mode degrades in both aspects.
Learning from Integral Losses in Physics Informed Neural Networks
Saleh, Ehsan, Ghaffari, Saba, Bretl, Timothy, Olson, Luke, West, Matthew
This work proposes a solution for the problem of training physics informed networks under partial integro-differential equations. These equations require infinite or a large number of neural evaluations to construct a single residual for training. As a result, accurate evaluation may be impractical, and we show that naive approximations at replacing these integrals with unbiased estimates lead to biased loss functions and solutions. To overcome this bias, we investigate three types of solutions: the deterministic sampling approach, the double-sampling trick, and the delayed target method. We consider three classes of PDEs for benchmarking; one defining a Poisson problem with singular charges and weak solutions, another involving weak solutions on electro-magnetic fields and a Maxwell equation, and a third one defining a Smoluchowski coagulation problem. Our numerical results confirm the existence of the aforementioned bias in practice, and also show that our proposed delayed target approach can lead to accurate solutions with comparable quality to ones estimated with a large number of samples.
Hypergraph-based Multi-Robot Task and Motion Planning
Motes, James, Chen, Tan, Bretl, Timothy, Morales, Marco, Amato, Nancy M.
We present a multi-robot task and motion planning method that, when applied to the rearrangement of objects by manipulators, results in solution times up to three orders of magnitude faster than existing methods and successfully plans for problems with up to twenty objects, more than three times as many objects as comparable methods. We achieve this improvement by decomposing the planning space to consider manipulators alone, objects, and manipulators holding objects. We represent this decomposition with a hypergraph where vertices are decomposed elements of the planning spaces and hyperarcs are transitions between elements. Existing methods use graph-based representations where vertices are full composite spaces and edges are transitions between these. Using the hypergraph reduces the representation size of the planning space-for multi-manipulator object rearrangement, the number of hypergraph vertices scales linearly with the number of either robots or objects, while the number of hyperarcs scales quadratically with the number of robots and linearly with the number of objects. In contrast, the number of vertices and edges in graph-based representations scales exponentially in the number of robots and objects. We show that similar gains can be achieved for other multi-robot task and motion planning problems.