Bresson, Xavier
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Defferrard, Michaël, Bresson, Xavier, Vandergheynst, Pierre
In this work, we are interested in generalizing convolutional neural networks (CNNs) from low-dimensional regular grids, where image, video and speech are represented, to high-dimensional irregular domains, such as social networks, brain connectomes or words’ embedding, represented by graphs. We present a formulation of CNNs in the context of spectral graph theory, which provides the necessary mathematical background and efficient numerical schemes to design fast localized convolutional filters on graphs. Importantly, the proposed technique offers the same linear computational complexity and constant learning complexity as classical CNNs, while being universal to any graph structure. Experiments on MNIST and 20NEWS demonstrate the ability of this novel deep learning system to learn local, stationary, and compositional features on graphs.
Structured Sequence Modeling with Graph Convolutional Recurrent Networks
Seo, Youngjoo, Defferrard, Michaël, Vandergheynst, Pierre, Bresson, Xavier
This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks on a vocabulary graph for natural language modeling. The proposed model combines convolutional neural networks (CNN) on graphs to identify spatial structures and RNN to find dynamic patterns. We study two possible architectures of GCRN, and apply the models to two practical problems: predicting moving MNIST data, and modeling natural language with the Penn Treebank dataset. Experiments show that exploiting simultaneously graph spatial and dynamic information about data can improve both precision and learning speed.
Song Recommendation with Non-Negative Matrix Factorization and Graph Total Variation
Benzi, Kirell, Kalofolias, Vassilis, Bresson, Xavier, Vandergheynst, Pierre
This work formulates a novel song recommender system as a matrix completion problem that benefits from collaborative filtering through Non-negative Matrix Factorization (NMF) and content-based filtering via total variation (TV) on graphs. The graphs encode both playlist proximity information and song similarity, using a rich combination of audio, meta-data and social features. As we demonstrate, our hybrid recommendation system is very versatile and incorporates several well-known methods while outperforming them. Particularly, we show on real-world data that our model overcomes w.r.t. two evaluation metrics the recommendation of models solely based on low-rank information, graph-based information or a combination of both.
Enhanced Lasso Recovery on Graph
Bresson, Xavier, Laurent, Thomas, von Brecht, James
This work aims at recovering signals that are sparse on graphs. Compressed sensing offers techniques for signal recovery from a few linear measurements and graph Fourier analysis provides a signal representation on graph. In this paper, we leverage these two frameworks to introduce a new Lasso recovery algorithm on graphs. More precisely, we present a non-convex, non-smooth algorithm that outperforms the standard convex Lasso technique. We carry out numerical experiments on three benchmark graph datasets.
Matrix Completion on Graphs
Kalofolias, Vassilis, Bresson, Xavier, Bronstein, Michael, Vandergheynst, Pierre
The problem of finding the missing values of a matrix given a few of its entries, called matrix completion, has gathered a lot of attention in the recent years. Although the problem under the standard low rank assumption is NP-hard, Cand\`es and Recht showed that it can be exactly relaxed if the number of observed entries is sufficiently large. In this work, we introduce a novel matrix completion model that makes use of proximity information about rows and columns by assuming they form communities. This assumption makes sense in several real-world problems like in recommender systems, where there are communities of people sharing preferences, while products form clusters that receive similar ratings. Our main goal is thus to find a low-rank solution that is structured by the proximities of rows and columns encoded by graphs. We borrow ideas from manifold learning to constrain our solution to be smooth on these graphs, in order to implicitly force row and column proximities. Our matrix recovery model is formulated as a convex non-smooth optimization problem, for which a well-posed iterative scheme is provided. We study and evaluate the proposed matrix completion on synthetic and real data, showing that the proposed structured low-rank recovery model outperforms the standard matrix completion model in many situations.
Consistency of Cheeger and Ratio Graph Cuts
Trillos, Nicolas Garcia, Slepcev, Dejan, von Brecht, James, Laurent, Thomas, Bresson, Xavier
This paper establishes the consistency of a family of graph-cut-based algorithms for clustering of data clouds. We consider point clouds obtained as samples of a ground-truth measure. We investigate approaches to clustering based on minimizing objective functionals defined on proximity graphs of the given sample. Our focus is on functionals based on graph cuts like the Cheeger and ratio cuts. We show that minimizers of the these cuts converge as the sample size increases to a minimizer of a corresponding continuum cut (which partitions the ground truth measure). Moreover, we obtain sharp conditions on how the connectivity radius can be scaled with respect to the number of sample points for the consistency to hold. We provide results for two-way and for multiway cuts. Furthermore we provide numerical experiments that illustrate the results and explore the optimality of scaling in dimension two.
An Incremental Reseeding Strategy for Clustering
Bresson, Xavier, Hu, Huiyi, Laurent, Thomas, Szlam, Arthur, von Brecht, James
In this work we propose a simple and easily parallelizable algorithm for multiway graph partitioning. The algorithm alternates between three basic components: diffusing seed vertices over the graph, thresholding the diffused seeds, and then randomly reseeding the thresholded clusters. We demonstrate experimentally that the proper combination of these ingredients leads to an algorithm that achieves state-of-the-art performance in terms of cluster purity on standard benchmarks datasets. Moreover, the algorithm runs an order of magnitude faster than the other algorithms that achieve comparable results in terms of accuracy. We also describe a coarsen, cluster and refine approach similar to GRACLUS and METIS that removes an additional order of magnitude from the runtime of our algorithm while still maintaining competitive accuracy.
Multiclass Total Variation Clustering
Bresson, Xavier, Laurent, Thomas, Uminsky, David, Brecht, James von
Ideas from the image processing literature have recently motivated a new set of clustering algorithms that rely on the concept of total variation. While these algorithms perform well for bi-partitioning tasks, their recursive extensions yield unimpressive results for multiclass clustering tasks. This paper presents a general framework for multiclass total variation clustering that does not rely on recursion. The results greatly outperform previous total variation algorithms and compare well with state-of-the-art NMF approaches.
Multiclass Total Variation Clustering
Bresson, Xavier, Laurent, Thomas, Uminsky, David, von Brecht, James H.
Ideas from the image processing literature have recently motivated a new set of clustering algorithms that rely on the concept of total variation. While these algorithms perform well for bi-partitioning tasks, their recursive extensions yield unimpressive results for multiclass clustering tasks. This paper presents a general framework for multiclass total variation clustering that does not rely on recursion. The results greatly outperform previous total variation algorithms and compare well with state-of-the-art NMF approaches.
Convergence and Energy Landscape for Cheeger Cut Clustering
Bresson, Xavier, Laurent, Thomas, Uminsky, David, Brecht, James V.
Unsupervised clustering of scattered, noisy and high-dimensional data points is an important and difficult problem. Continuous relaxations of balanced cut problems yield excellent clustering results. This paper provides rigorous convergence results for two algorithms that solve the relaxed Cheeger Cut minimization. The first algorithm is a new steepest descent algorithm and the second one is a slight modification of the Inverse Power Method algorithm \cite{pro:HeinBuhler10OneSpec}. While the steepest descent algorithm has better theoretical convergence properties, in practice both algorithm perform equally. We also completely characterize the local minima of the relaxed problem in terms of the original balanced cut problem, and relate this characterization to the convergence of the algorithms.