Plotting

 Bouneffouf, Djallel


Exponentiated Gradient Exploration for Active Learning

arXiv.org Artificial Intelligence

Active learning strategies respond to the costly labelling task in a supervised classification by selecting the most useful unlabelled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named EG-Active that can improve any Active learning algorithm by an optimal random exploration. Experimental results show a statistically significant and appreciable improvement in the performance of our new approach over the existing active feedback methods.


Applying machine learning techniques to improve user acceptance on ubiquitous environement

arXiv.org Artificial Intelligence

Ubiquitous information access becomes more and more important nowadays and research is aimed at making it adapted to users. Our work consists in applying machine learning techniques in order to adapt the information access provided by ubiquitous systems to users when the system only knows the user social group, without knowing anything about the user interest. The adaptation procedures associate actions to perceived situations of the user. Associations are based on feedback given by the user as a reaction to the behavior of the system. Our method brings a solution to some of the problems concerning the acceptance of the system by users when applying machine learning techniques to systems at the beginning of the interaction between the system and the user.