Goto

Collaborating Authors

 Bordes, Florian


A surprisingly simple technique to control the pretraining bias for better transfer: Expand or Narrow your representation

arXiv.org Artificial Intelligence

Self-Supervised Learning (SSL) models rely on a pretext task to learn representations. Because this pretext task differs from the downstream tasks used to evaluate the performance of these models, there is an inherent misalignment or pretraining bias. A commonly used trick in SSL, shown to make deep networks more robust to such bias, is the addition of a small projector (usually a 2 or 3 layer multi-layer perceptron) on top of a backbone network during training. In contrast to previous work that studied the impact of the projector architecture, we here focus on a simpler, yet overlooked lever to control the information in the backbone representation. We show that merely changing its dimensionality -- by changing only the size of the backbone's very last block -- is a remarkably effective technique to mitigate the pretraining bias. It significantly improves downstream transfer performance for both Self-Supervised and Supervised pretrained models.


Towards Democratizing Joint-Embedding Self-Supervised Learning

arXiv.org Artificial Intelligence

Joint Embedding Self-Supervised Learning (JE-SSL) has seen rapid developments in recent years, due to its promise to effectively leverage large unlabeled data. The development of JE-SSL methods was driven primarily by the search for ever increasing downstream classification accuracies, using huge computational resources, and typically built upon insights and intuitions inherited from a close parent JE-SSL method. This has led unwittingly to numerous pre-conceived ideas that carried over across methods e.g. that SimCLR requires very large mini batches to yield competitive accuracies; that strong and computationally slow data augmentations are required. In this work, we debunk several such ill-formed a priori ideas in the hope to unleash the full potential of JE-SSL free of unnecessary limitations. In fact, when carefully evaluating performances across different downstream tasks and properly optimizing hyper-parameters of the methods, we most often -- if not always -- see that these widespread misconceptions do not hold. For example we show that it is possible to train SimCLR to learn useful representations, while using a single image patch as negative example, and simple Gaussian noise as the only data augmentation for the positive pair. Along these lines, in the hope to democratize JE-SSL and to allow researchers to easily make more extensive evaluations of their methods, we introduce an optimized PyTorch library for SSL.


High Fidelity Visualization of What Your Self-Supervised Representation Knows About

arXiv.org Artificial Intelligence

Discovering what is learned by neural networks remains a challenge. In self-supervised learning, classification is the most common task used to evaluate how good a representation is. However, relying only on such downstream task can limit our understanding of how much information is retained in the representation of a given input. In this work, we showcase the use of a conditional diffusion based generative model (RCDM) to visualize representations learned with self-supervised models. We further demonstrate how this model's generation quality is on par with state-of-the-art generative models while being faithful to the representation used as conditioning. By using this new tool to analyze self-supervised models, we can show visually that i) SSL (backbone) representation are not really invariant to many data augmentation they were trained on. ii) SSL projector embedding appear too invariant for tasks like classifications. iii) SSL representations are more robust to small adversarial perturbation of their inputs iv) there is an inherent structure learned with SSL model that can be used for image manipulation.


Learning to Generate Samples from Noise through Infusion Training

arXiv.org Machine Learning

In this work, we investigate a novel training procedure to learn a generative model as the transition operator of a Markov chain, such that, when applied repeatedly on an unstructured random noise sample, it will denoise it into a sample that matches the target distribution from the training set. The novel training procedure to learn this progressive denoising operation involves sampling from a slightly different chain than the model chain used for generation in the absence of a denoising target. In the training chain we infuse information from the training target example that we would like the chains to reach with a high probability. The thus learned transition operator is able to produce quality and varied samples in a small number of steps. Experiments show competitive results compared to the samples generated with a basic Generative Adversarial Net