Goto

Collaborating Authors

 Bontempi, Gianluca


Streaming Active Learning Strategies for Real-Life Credit Card Fraud Detection: Assessment and Visualization

arXiv.org Machine Learning

Credit card fraud detection is a very challenging problem because of the specific nature of transaction data and the labeling process. The transaction data is peculiar because they are obtained in a streaming fashion, they are strongly imbalanced and prone to non-stationarity. The labeling is the outcome of an active learning process, as every day human investigators contact only a small number of cardholders (associated to the riskiest transactions) and obtain the class (fraud or genuine) of the related transactions. An adequate selection of the set of cardholders is therefore crucial for an efficient fraud detection process. In this paper, we present a number of active learning strategies and we investigate their fraud detection accuracies. We compare different criteria (supervised, semi-supervised and unsupervised) to query unlabeled transactions. Finally, we highlight the existence of an exploitation/exploration trade-off for active learning in the context of fraud detection, which has so far been overlooked in the literature.


Feature selection in high-dimensional dataset using MapReduce

arXiv.org Machine Learning

This paper describes a distributed MapReduce implementation of the minimum Redundancy Maximum Relevance algorithm, a popular feature selection method in bioinformatics and network inference problems. The proposed approach handles both tall/narrow and wide/short datasets. We further provide an open source implementation based on Hadoop/Spark, and illustrate its scalability on datasets involving millions of observations or features.


From dependency to causality: a machine learning approach

arXiv.org Machine Learning

The relationship between statistical dependency and causality lies at the heart of all statistical approaches to causal inference. Recent results in the ChaLearn cause-effect pair challenge have shown that causal directionality can be inferred with good accuracy also in Markov indistinguishable configurations thanks to data driven approaches. This paper proposes a supervised machine learning approach to infer the existence of a directed causal link between two variables in multivariate settings with $n>2$ variables. The approach relies on the asymmetry of some conditional (in)dependence relations between the members of the Markov blankets of two variables causally connected. Our results show that supervised learning methods may be successfully used to extract causal information on the basis of asymmetric statistical descriptors also for $n>2$ variate distributions.


A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition

arXiv.org Machine Learning

Multi-step ahead forecasting is still an open challenge in time series forecasting. Several approaches that deal with this complex problem have been proposed in the literature but an extensive comparison on a large number of tasks is still missing. This paper aims to fill this gap by reviewing existing strategies for multi-step ahead forecasting and comparing them in theoretical and practical terms. To attain such an objective, we performed a large scale comparison of these different strategies using a large experimental benchmark (namely the 111 series from the NN5 forecasting competition). In addition, we considered the effects of deseasonalization, input variable selection, and forecast combination on these strategies and on multi-step ahead forecasting at large. The following three findings appear to be consistently supported by the experimental results: Multiple-Output strategies are the best performing approaches, deseasonalization leads to uniformly improved forecast accuracy, and input selection is more effective when performed in conjunction with deseasonalization.


Lazy Learning Meets the Recursive Least Squares Algorithm

Neural Information Processing Systems

Lazy learning is a memory-based technique that, once a query is received, extracts a prediction interpolating locally the neighboring examples of the query which are considered relevant according to a distance measure. In this paper we propose a data-driven method to select on a query-by-query basis the optimal number of neighbors to be considered for each prediction. As an efficient way to identify and validate local models, the recursive least squares algorithm is introduced in the context of local approximation and lazy learning. Furthermore, beside the winner-takes-all strategy for model selection, a local combination of the most promising models is explored. The method proposed is tested on six different datasets and compared with a state-of-the-art approach.


Lazy Learning Meets the Recursive Least Squares Algorithm

Neural Information Processing Systems

Lazy learning is a memory-based technique that, once a query is received, extractsa prediction interpolating locally the neighboring examples of the query which are considered relevant according to a distance measure. In this paper we propose a data-driven method to select on a query-by-query basis the optimal number of neighbors to be considered for each prediction. As an efficient way to identify and validate local models, the recursive least squares algorithm is introduced in the context oflocal approximation and lazy learning. Furthermore, beside the winner-takes-all strategy for model selection, a local combination of the most promising models is explored. The method proposed is tested on six different datasets and compared with a state-of-the-art approach.