Goto

Collaborating Authors

 Bi, Baolong


Is Factuality Decoding a Free Lunch for LLMs? Evaluation on Knowledge Editing Benchmark

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs) enables them to convey factual knowledge in a more human-like fashion. Extensive efforts have been made to reduce factual hallucinations by modifying LLMs with factuality decoding. However, they also pose risks of hindering knowledge updates, as they make models overly confident in known facts. In this work, we first revisite the current factuality decoding methods and verified their effectiveness in enhancing factual accuracy. Subsequently, we conduct further evaluation of several strong factuality decoding methods on the knowledge editing benchmark. All these decoding methods significantly diminish the performance of llama2 models compared to their original decoding, with the largest decrease being a staggering 81.3\%. This further indicates that the current existing decoding methods still cannot perfectly address the factual hallucinations, as they overlook the importance of preserving the flexibility for knowledge editing. Therefore, our work suggests that research into factual alignment should simultaneously focus on the effectiveness of knowledge editing.


LPNL: Scalable Link Prediction with Large Language Models

arXiv.org Artificial Intelligence

Exploring the application of large language models (LLMs) to graph learning is a emerging endeavor. However, the vast amount of information inherent in large graphs poses significant challenges to this process. This work focuses on the link prediction task and introduces $\textbf{LPNL}$ (Link Prediction via Natural Language), a framework based on large language models designed for scalable link prediction on large-scale heterogeneous graphs. We design novel prompts for link prediction that articulate graph details in natural language. We propose a two-stage sampling pipeline to extract crucial information from the graphs, and a divide-and-conquer strategy to control the input tokens within predefined limits, addressing the challenge of overwhelming information. We fine-tune a T5 model based on our self-supervised learning designed for link prediction. Extensive experimental results demonstrate that LPNL outperforms multiple advanced baselines in link prediction tasks on large-scale graphs.


SLANG: New Concept Comprehension of Large Language Models

arXiv.org Artificial Intelligence

The dynamic nature of language, particularly evident in the realm of slang and memes on the Internet, poses serious challenges to the adaptability of large language models (LLMs). Traditionally anchored to static datasets, these models often struggle to keep up with the rapid linguistic evolution characteristic of online communities. This research aims to bridge this gap by enhancing LLMs' comprehension of the evolving new concepts on the Internet, without the high cost of continual retraining. In pursuit of this goal, we propose a new benchmark $\textbf{SLANG}$, which can autonomously integrates novel data to stay dataset up-to-date, to assess LLMs' capability in comprehending emerging concepts and an approach $\textbf{FOCUS}$, which uses causal inference to enhance LLMs to understand new phrases and their colloquial context. Our benchmark and approach involves digesting real-world instances of linguistic shifts, serving as contextual beacons, to form more precise and contextually relevant connections between newly emerging expressions and their meanings. The empirical analysis shows that our causal inference-based approach outperforms the traditional models in terms of precision and relevance in the comprehension of Internet slang and memes.