Goto

Collaborating Authors

 Bhattacharya, Anirban


Statistical Guarantees for Transformation Based Models with Applications to Implicit Variational Inference

arXiv.org Machine Learning

Transformation-based methods have been an attractive approach in non-parametric inference for problems such as unconditional and conditional density estimation due to their unique hierarchical structure that models the data as flexible transformation of a set of common latent variables. More recently, transformation-based models have been used in variational inference (VI) to construct flexible implicit families of variational distributions. However, their use in both non-parametric inference and variational inference lacks theoretical justification. We provide theoretical justification for the use of non-linear latent variable models (NL-LVMs) in non-parametric inference by showing that the support of the transformation induced prior in the space of densities is sufficiently large in the $L_1$ sense. We also show that, when a Gaussian process (GP) prior is placed on the transformation function, the posterior concentrates at the optimal rate up to a logarithmic factor. Adopting the flexibility demonstrated in the non-parametric setting, we use the NL-LVM to construct an implicit family of variational distributions, deemed GP-IVI. We delineate sufficient conditions under which GP-IVI achieves optimal risk bounds and approximates the true posterior in the sense of the Kullback-Leibler divergence. To the best of our knowledge, this is the first work on providing theoretical guarantees for implicit variational inference.


Statistical optimality and stability of tangent transform algorithms in logit models

arXiv.org Machine Learning

A systematic approach to finding variational approximation in an otherwise intractable non-conjugate model is to exploit the general principle of convex duality by minorizing the marginal likelihood that renders the problem tractable. While such approaches are popular in the context of variational inference in non-conjugate Bayesian models, theoretical guarantees on statistical optimality and algorithmic convergence are lacking. Focusing on logistic regression models, we provide mild conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the variational optima. We demonstrate that these assumptions can be completely relaxed if one considers a slight variation of the algorithm by raising the likelihood to a fractional power. Next, we utilize the theory of dynamical systems to provide convergence guarantees for such algorithms in logistic and multinomial logit regression. In particular, we establish local asymptotic stability of the algorithm without any assumptions on the data-generating process. We explore a special case involving a semi-orthogonal design under which a global convergence is obtained. The theory is further illustrated using several numerical studies.


Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting

arXiv.org Machine Learning

Variational Bayes has gained popularity in recent years as an alternative to Markov chain Monte Carlo procedures to approximate analytically intractable posterior distributions; refer to Blei et al. [2017] for a comprehensive overview. Variational inference formulates the problem of approximating the posterior as an optimization routine by minimizing a measure of discrepancy between probability densities in an approximating class and the posterior density. The variational solution refers to the closest member of the approximating class to the posterior, with closeness measured through divergences or metrics, usually Kullback-Leibler divergence. Other discrepancy measures for approximating the posterior have been studied, like the Wasserstein distance and Rรฉnyi divergence in Huggins et al. [2020], Fisher distance in Huggins et al. [2018] and Hellinger metric in Campbell and Li [2019]. The approximating class or the domain of optimization, commonly referred to as the variational family, plays a central role in these methods. It is chosen to strike a balance between computational tractability and approximation power. A richer, more flexible family allows better approximation of the posterior, while a simpler class of distributions facilitate calculations and computation speed. The Gaussian family is a popular example of a parametric variational family, where the optimization effectively takes place over a finite-dimensional parameter space. For a semi-parametric approach, one can use the popular mean-field family, which only assumes that the variational density factorizes over pre-specified sub-blocks of the parameter, with the factors otherwise unrestricted.


Bandit Learning Through Biased Maximum Likelihood Estimation

arXiv.org Machine Learning

We propose BMLE, a new family of bandit algorithms, that are formulated in a general way based on the Biased Maximum Likelihood Estimation method originally appearing in the adaptive control literature. We design the cost-bias term to tackle the exploration and exploitation tradeoff for stochastic bandit problems. We provide an explicit closed form expression for the index of an arm for Bernoulli bandits, which is trivial to compute. We also provide a general recipe for extending the BMLE algorithm to other families of reward distributions. We prove that for Bernoulli bandits, the BMLE algorithm achieves a logarithmic finite-time regret bound and hence attains order-optimality. Through extensive simulations, we demonstrate that the proposed algorithms achieve regret performance comparable to the best of several state-of-the-art baseline methods, while having a significant computational advantage in comparison to other best performing methods. The generality of the proposed approach makes it possible to address more complex models, including general adaptive control of Markovian systems.


Heteroscedastic Bandits with Reneging

arXiv.org Machine Learning

Although shown to be useful in many areas as models for solving sequential decision problems with side observations (contexts), contextual bandits are subject to two major limitations. First, they neglect user "reneging" that occurs in real-world applications. That is, users unsatisfied with an interaction quit future interactions forever. Second, they assume that the reward distribution is homoscedastic, which is often invalidated by real-world datasets, e.g., datasets from finance. We propose a novel model of "heteroscedastic contextual bandits with reneging" to overcome the two limitations. Our model allows each user to have a distinct "acceptance level," with any interaction falling short of that level resulting in that user reneging. It also allows the variance to be a function of context. We develop a UCB-type of policy, called HR-UCB, and prove that with high probability it achieves $\mathcal{O}\Big(\sqrt{{T}}\big(\log({T})\big)^{3/2}\Big)$ regret.


$\alpha$-Variational Inference with Statistical Guarantees

arXiv.org Machine Learning

We propose a family of variational approximations to Bayesian posterior distributions, called $\alpha$-VB, with provable statistical guarantees. The standard variational approximation is a special case of $\alpha$-VB with $\alpha=1$. When $\alpha \in(0,1]$, a novel class of variational inequalities are developed for linking the Bayes risk under the variational approximation to the objective function in the variational optimization problem, implying that maximizing the evidence lower bound in variational inference has the effect of minimizing the Bayes risk within the variational density family. Operating in a frequentist setup, the variational inequalities imply that point estimates constructed from the $\alpha$-VB procedure converge at an optimal rate to the true parameter in a wide range of problems. We illustrate our general theory with a number of examples, including the mean-field variational approximation to (low)-high-dimensional Bayesian linear regression with spike and slab priors, mixture of Gaussian models, latent Dirichlet allocation, and (mixture of) Gaussian variational approximation in regular parametric models.


On Statistical Optimality of Variational Bayes

arXiv.org Machine Learning

The article addresses a long-standing open problem on the justification of using variational Bayes methods for parameter estimation. We provide general conditions for obtaining optimal risk bounds for point estimates acquired from mean-field variational Bayesian inference. The conditions pertain to the existence of certain test functions for the distance metric on the parameter space and minimal assumptions on the prior. A general recipe for verification of the conditions is outlined which is broadly applicable to existing Bayesian models with or without latent variables. As illustrations, specific applications to Latent Dirichlet Allocation and Gaussian mixture models are discussed.


Frequentist coverage and sup-norm convergence rate in Gaussian process regression

arXiv.org Machine Learning

Gaussian process (GP) regression is a powerful interpolation technique due to its flexibility in capturing non-linearity. In this paper, we provide a general framework for understanding the frequentist coverage of point-wise and simultaneous Bayesian credible sets in GP regression. As an intermediate result, we develop a Bernstein von-Mises type result under supremum norm in random design GP regression. Identifying both the mean and covariance function of the posterior distribution of the Gaussian process as regularized $M$-estimators, we show that the sampling distribution of the posterior mean function and the centered posterior distribution can be respectively approximated by two population level GPs. By developing a comparison inequality between two GPs, we provide exact characterization of frequentist coverage probabilities of Bayesian point-wise credible intervals and simultaneous credible bands of the regression function. Our results show that inference based on GP regression tends to be conservative; when the prior is under-smoothed, the resulting credible intervals and bands have minimax-optimal sizes, with their frequentist coverage converging to a non-degenerate value between their nominal level and one. As a byproduct of our theory, we show that the GP regression also yields minimax-optimal posterior contraction rate relative to the supremum norm, which provides a positive evidence to the long standing problem on optimal supremum norm contraction rate in GP regression.