Not enough data to create a plot.
Try a different view from the menu above.
Bertrand, Alexander
Distributed Blind Source Separation based on FastICA
Musluoglu, Cem Ates, Bertrand, Alexander
With the emergence of wireless sensor networks (WSNs), many traditional signal processing tasks are required to be computed in a distributed fashion, without transmissions of the raw data to a centralized processing unit, due to the limited energy and bandwidth resources available to the sensors. In this paper, we propose a distributed independent component analysis (ICA) algorithm, which aims at identifying the original signal sources based on observations of their mixtures measured at various sensor nodes. One of the most commonly used ICA algorithms is known as FastICA, which requires a spatial pre-whitening operation in the first step of the algorithm. Such a pre-whitening across all nodes of a WSN is impossible in a bandwidth-constrained distributed setting as it requires to correlate each channel with each other channel in the WSN. We show that an explicit network-wide pre-whitening step can be circumvented by leveraging the properties of the so-called Distributed Adaptive Signal Fusion (DASF) framework. Despite the lack of such a network-wide pre-whitening, we can still obtain the $Q$ least Gaussian independent components of the centralized ICA solution, where $Q$ scales linearly with the required communication load.
Conditional Gumbel-Softmax for constrained feature selection with application to node selection in wireless sensor networks
Strypsteen, Thomas, Bertrand, Alexander
In this paper, we introduce Conditional Gumbel-Softmax as a method to perform end-to-end learning of the optimal feature subset for a given task and deep neural network (DNN) model, while adhering to certain pairwise constraints between the features. We do this by conditioning the selection of each feature in the subset on another feature. We demonstrate how this approach can be used to select the task-optimal nodes composing a wireless sensor network (WSN) while ensuring that none of the nodes that require communication between one another have too large of a distance between them, limiting the required power spent on this communication. We validate this approach on an emulated Wireless Electroencephalography (EEG) Sensor Network (WESN) solving a motor execution task. We analyze how the performance of the WESN varies as the constraints are made more stringent and how well the Conditional Gumbel-Softmax performs in comparison with a heuristic, greedy selection method. While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology is generic and can readily be applied to node deployment in wireless sensor networks and constrained feature selection in other applications as well.
Minimally Informed Linear Discriminant Analysis: training an LDA model with unlabelled data
Heintz, Nicolas, Francart, Tom, Bertrand, Alexander
Linear Discriminant Analysis (LDA) is one of the oldest and most popular linear methods for supervised classification problems. In this paper, we demonstrate that it is possible to compute the exact projection vector from LDA models based on unlabelled data, if some minimal prior information is available. More precisely, we show that only one of the following three pieces of information is actually sufficient to compute the LDA projection vector if only unlabelled data are available: (1) the class average of one of the two classes, (2) the difference between both class averages (up to a scaling), or (3) the class covariance matrices (up to a scaling). These theoretical results are validated in numerical experiments, demonstrating that this minimally informed Linear Discriminant Analysis (MILDA) model closely matches the performance of a supervised LDA model. Furthermore, we show that the MILDA projection vector can be computed in a closed form with a computational cost comparable to LDA and is able to quickly adapt to non-stationary data, making it well-suited to use as an adaptive classifier.
A distributed neural network architecture for dynamic sensor selection with application to bandwidth-constrained body-sensor networks
Strypsteen, Thomas, Bertrand, Alexander
We propose a dynamic sensor selection approach for deep neural networks (DNNs), which is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset. This dynamic selection is jointly learned with the task model in an end-to-end way, using the Gumbel-Softmax trick to allow the discrete decisions to be learned through standard backpropagation. We then show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit. We further improve performance by including a dynamic spatial filter that makes the task-DNN more robust against the fact that it now needs to be able to handle a multitude of possible node subsets. Finally, we explain how the selection of the optimal channels can be distributed across the different nodes in a WSN. We validate this method on a use case in the context of body-sensor networks, where we use real electroencephalography (EEG) sensor data to emulate an EEG sensor network. We analyze the resulting trade-offs between transmission load and task accuracy.
Avoiding Post-Processing with Event-Based Detection in Biomedical Signals
Seeuws, Nick, De Vos, Maarten, Bertrand, Alexander
Objective: Finding events of interest is a common task in biomedical signal processing. The detection of epileptic seizures and signal artefacts are two key examples. Epoch-based classification is the typical machine learning framework to detect such signal events because of the straightforward application of classical machine learning techniques. Usually, post-processing is required to achieve good performance and enforce temporal dependencies. Designing the right post-processing scheme to convert these classification outputs into events is a tedious, and labor-intensive element of this framework. Methods: We propose an event-based modeling framework that directly works with events as learning targets, stepping away from ad-hoc post-processing schemes to turn model outputs into events. We illustrate the practical power of this framework on simulated data and real-world data, comparing it to epoch-based modeling approaches. Results: We show that event-based modeling (without post-processing) performs on par with or better than epoch-based modeling with extensive post-processing. Conclusion: These results show the power of treating events as direct learning targets, instead of using ad-hoc post-processing to obtain them, severely reducing design effort. Significance: The event-based modeling framework can easily be applied to other event detection problems in signal processing, removing the need for intensive task-specific post-processing.
Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation
De Ryck, Tim, De Vos, Maarten, Bertrand, Alexander
Change point detection (CPD) aims to locate abrupt property changes in time series data. Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal and suffer from a high false alarm rate. To address these issues, we employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD. The result is a flexible method that allows the user to indicate whether change points should be sought in the time domain, frequency domain or both. Detectable change points include abrupt changes in the slope, mean, variance, autocorrelation function and frequency spectrum. We demonstrate that our proposed method is consistently highly competitive or superior to baseline methods on diverse simulated and real-life benchmark data sets. Finally, we mitigate the issue of false detection alarms through the use of a postprocessing procedure that combines a matched filter and a newly proposed change point score. We show that this combination drastically improves the performance of our method as well as all baseline methods.
EEG-informed attended speaker extraction from recorded speech mixtures with application in neuro-steered hearing prostheses
Van Eyndhoven, Simon, Francart, Tom, Bertrand, Alexander
OBJECTIVE: We aim to extract and denoise the attended speaker in a noisy, two-speaker acoustic scenario, relying on microphone array recordings from a binaural hearing aid, which are complemented with electroencephalography (EEG) recordings to infer the speaker of interest. METHODS: In this study, we propose a modular processing flow that first extracts the two speech envelopes from the microphone recordings, then selects the attended speech envelope based on the EEG, and finally uses this envelope to inform a multi-channel speech separation and denoising algorithm. RESULTS: Strong suppression of interfering (unattended) speech and background noise is achieved, while the attended speech is preserved. Furthermore, EEG-based auditory attention detection (AAD) is shown to be robust to the use of noisy speech signals. CONCLUSIONS: Our results show that AAD-based speaker extraction from microphone array recordings is feasible and robust, even in noisy acoustic environments, and without access to the clean speech signals to perform EEG-based AAD. SIGNIFICANCE: Current research on AAD always assumes the availability of the clean speech signals, which limits the applicability in real settings. We have extended this research to detect the attended speaker even when only microphone recordings with noisy speech mixtures are available. This is an enabling ingredient for new brain-computer interfaces and effective filtering schemes in neuro-steered hearing prostheses. Here, we provide a first proof of concept for EEG-informed attended speaker extraction and denoising.