Goto

Collaborating Authors

 Berthet, Quentin


Statistical Windows in Testing for the Initial Distribution of a Reversible Markov Chain

arXiv.org Machine Learning

We study the problem of hypothesis testing between two discrete distributions, where we only have access to samples after the action of a known reversible Markov chain, playing the role of noise. We derive instance-dependent minimax rates for the sample complexity of this problem, and show how its dependence in time is related to the spectral properties of the Markov chain. We show that there exists a wide statistical window, in terms of sample complexity for hypothesis testing between different pairs of initial distributions. We illustrate these results in several concrete examples.


Unsupervised Alignment of Embeddings with Wasserstein Procrustes

arXiv.org Machine Learning

We consider the task of aligning two sets of points in high dimension, which has many applications in natural language processing and computer vision. As an example, it was recently shown that it is possible to infer a bilingual lexicon, without supervised data, by aligning word embeddings trained on monolingual data. These recent advances are based on adversarial training to learn the mapping between the two embeddings. In this paper, we propose to use an alternative formulation, based on the joint estimation of an orthogonal matrix and a permutation matrix. While this problem is not convex, we propose to initialize our optimization algorithm by using a convex relaxation, traditionally considered for the graph isomorphism problem. We propose a stochastic algorithm to minimize our cost function on large scale problems. Finally, we evaluate our method on the problem of unsupervised word translation, by aligning word embeddings trained on monolingual data. On this task, our method obtains state of the art results, while requiring less computational resources than competing approaches.


Optimal link prediction with matrix logistic regression

arXiv.org Machine Learning

We consider the problem of link prediction, based on partial observation of a large network, and on side information associated to its vertices. The generative model is formulated as a matrix logistic regression. The performance of the model is analysed in a high-dimensional regime under a structural assumption. The minimax rate for the Frobenius-norm risk is established and a combinatorial estimator based on the penalised maximum likelihood approach is shown to achieve it. Furthermore, it is shown that this rate cannot be attained by any (randomised) algorithm computable in polynomial time under a computational complexity assumption.


Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe

Neural Information Processing Systems

We consider the problem of bandit optimization, inspired by stochastic optimization and online learning problems with bandit feedback. In this problem, the objective is to minimize a global loss function of all the actions, not necessarily a cumulative loss. This framework allows us to study a very general class of problems, with applications in statistics, machine learning, and other fields. To solve this problem, we analyze the Upper-Confidence Frank-Wolfe algorithm, inspired by techniques for bandits and convex optimization. We give theoretical guarantees for the performance of this algorithm over various classes of functions, and discuss the optimality of these results.


Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe

arXiv.org Machine Learning

We consider the problem of bandit optimization, inspired by stochastic optimization and online learning problems with bandit feedback. In this problem, the objective is to minimize a global loss function of all the actions, not necessarily a cumulative loss. This framework allows us to study a very general class of problems, with applications in statistics, machine learning, and other fields. To solve this problem, we analyze the Upper-Confidence Frank-Wolfe algorithm, inspired by techniques for bandits and convex optimization. We give theoretical guarantees for the performance of this algorithm over various classes of functions, and discuss the optimality of these results.


Average-case hardness of RIP certification

Neural Information Processing Systems

The restricted isometry property (RIP) for design matrices gives guarantees for optimal recovery in sparse linear models. It is of high interest in compressed sensing and statistical learning. This property is particularly important for computationally efficient recovery methods. As a consequence, even though it is in general NP-hard to check that RIP holds, there have been substantial efforts to find tractable proxies for it. These would allow the construction of RIP matrices and the polynomial-time verification of RIP given an arbitrary matrix. We consider the framework of average-case certifiers, that never wrongly declare that a matrix is RIP, while being often correct for random instances. While there are such functions which are tractable in a suboptimal parameter regime, we show that this is a computationally hard task in any better regime. Our results are based on a new, weaker assumption on the problem of detecting dense subgraphs.


Statistical and computational trade-offs in estimation of sparse principal components

arXiv.org Machine Learning

In recent years, sparse principal component analysis has emerged as an extremely popular dimension reduction technique for high-dimensional data. The theoretical challenge, in the simplest case, is to estimate the leading eigenvector of a population covariance matrix under the assumption that this eigenvector is sparse. An impressive range of estimators have been proposed; some of these are fast to compute, while others are known to achieve the minimax optimal rate over certain Gaussian or sub-Gaussian classes. In this paper, we show that, under a widely-believed assumption from computational complexity theory, there is a fundamental trade-off between statistical and computational performance in this problem. More precisely, working with new, larger classes satisfying a restricted covariance concentration condition, we show that there is an effective sample size regime in which no randomised polynomial time algorithm can achieve the minimax optimal rate. We also study the theoretical performance of a (polynomial time) variant of the well-known semidefinite relaxation estimator, revealing a subtle interplay between statistical and computational efficiency.


Average-case Hardness of RIP Certification

arXiv.org Machine Learning

The restricted isometry property (RIP) for design matrices gives guarantees for optimal recovery in sparse linear models. It is of high interest in compressed sensing and statistical learning. This property is particularly important for computationally efficient recovery methods. As a consequence, even though it is in general NP-hard to check that RIP holds, there have been substantial efforts to find tractable proxies for it. These would allow the construction of RIP matrices and the polynomial-time verification of RIP given an arbitrary matrix. We consider the framework of average-case certifiers, that never wrongly declare that a matrix is RIP, while being often correct for random instances. While there are such functions which are tractable in a suboptimal parameter regime, we show that this is a computationally hard task in any better regime. Our results are based on a new, weaker assumption on the problem of detecting dense subgraphs.


Computational Lower Bounds for Sparse PCA

arXiv.org Machine Learning

In the context of sparse principal component detection, we bring evidence towards the existence of a statistical price to pay for computational efficiency. We measure the performance of a test by the smallest signal strength that it can detect and we propose a computationally efficient method based on semidefinite programming. We also prove that the statistical performance of this test cannot be strictly improved by any computationally efficient method. Our results can be viewed as complexity theoretic lower bounds conditionally on the assumptions that some instances of the planted clique problem cannot be solved in randomized polynomial time.