Well File:

 Bernhard Schölkopf


Avoiding Discrimination through Causal Reasoning

Neural Information Processing Systems

Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about our model of the causal data generating process?" Through the lens of causality, we make several contributions. First, we crisply articulate why and when observational criteria fail, thus formalizing what was before a matter of opinion. Second, our approach exposes previously ignored subtleties and why they are fundamental to the problem. Finally, we put forward natural causal non-discrimination criteria and develop algorithms that satisfy them.



Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Neural Information Processing Systems

Off-policy model-free deep reinforcement learning methods using previously collected data can improve sample efficiency over on-policy policy gradient techniques. On the other hand, on-policy algorithms are often more stable and easier to use. This paper examines, both theoretically and empirically, approaches to merging on-and off-policy updates for deep reinforcement learning. Theoretical results show that off-policy updates with a value function estimator can be interpolated with on-policy policy gradient updates whilst still satisfying performance bounds. Our analysis uses control variate methods to produce a family of policy gradient algorithms, with several recently proposed algorithms being special cases of this family. We then provide an empirical comparison of these techniques with the remaining algorithmic details fixed, and show how different mixing of off-policy gradient estimates with on-policy samples contribute to improvements in empirical performance. The final algorithm provides a generalization and unification of existing deep policy gradient techniques, has theoretical guarantees on the bias introduced by off-policy updates, and improves on the state-of-the-art model-free deep RL methods on a number of OpenAI Gym continuous control benchmarks.




On the Fairness of Disentangled Representations

Neural Information Processing Systems

Recently there has been a significant interest in learning disentangled representations, as they promise increased interpretability, generalization to unseen scenarios and faster learning on downstream tasks. In this paper, we investigate the usefulness of different notions of disentanglement for improving the fairness of downstream prediction tasks based on representations. We consider the setting where the goal is to predict a target variable based on the learned representation of high-dimensional observations (such as images) that depend on both the target variable and an unobserved sensitive variable. We show that in this setting both the optimal and empirical predictions can be unfair, even if the target variable and the sensitive variable are independent. Analyzing the representations of more than 12 600 trained state-ofthe-art disentangled models, we observe that several disentanglement scores are consistently correlated with increased fairness, suggesting that disentanglement may be a useful property to encourage fairness when sensitive variables are not observed.


Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Neural Information Processing Systems

Maximum Mean Discrepancy (MMD) is a distance on the space of probability measures which has found numerous applications in machine learning and nonparametric testing. This distance is based on the notion of embedding probabilities in a reproducing kernel Hilbert space. In this paper, we present the first known lower bounds for the estimation of MMD based on finite samples.


Consistent Kernel Mean Estimation for Functions of Random Variables

Neural Information Processing Systems

We provide a theoretical foundation for non-parametric estimation of functions of random variables using kernel mean embeddings. We show that for any continuous function f, consistent estimators of the mean embedding of a random variable X lead to consistent estimators of the mean embedding of f(X). For Matérn kernels and sufficiently smooth functions we also provide rates of convergence. Our results extend to functions of multiple random variables. If the variables are dependent, we require an estimator of the mean embedding of their joint distribution as a starting point; if they are independent, it is sufficient to have separate estimators of the mean embeddings of their marginal distributions. In either case, our results cover both mean embeddings based on i.i.d.


Avoiding Discrimination through Causal Reasoning

Neural Information Processing Systems

Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about our model of the causal data generating process?" Through the lens of causality, we make several contributions. First, we crisply articulate why and when observational criteria fail, thus formalizing what was before a matter of opinion. Second, our approach exposes previously ignored subtleties and why they are fundamental to the problem. Finally, we put forward natural causal non-discrimination criteria and develop algorithms that satisfy them.