Goto

Collaborating Authors

 Berenson, Dmitry


Constrained Stein Variational Trajectory Optimization

arXiv.org Artificial Intelligence

We present Constrained Stein Variational Trajectory Optimization (CSVTO), an algorithm for performing trajectory optimization with constraints on a set of trajectories in parallel. We frame constrained trajectory optimization as a novel form of constrained functional minimization over trajectory distributions, which avoids treating the constraints as a penalty in the objective and allows us to generate diverse sets of constraint-satisfying trajectories. Our method uses Stein Variational Gradient Descent (SVGD) to find a set of particles that approximates a distribution over low-cost trajectories while obeying constraints. CSVTO is applicable to problems with arbitrary equality and inequality constraints and includes a novel particle resampling step to escape local minima. By explicitly generating diverse sets of trajectories, CSVTO is better able to avoid poor local minima and is more robust to initialization. We demonstrate that CSVTO outperforms baselines in challenging highly-constrained tasks, such as a 7DoF wrench manipulation task, where CSVTO succeeds in 20/20 trials vs 13/20 for the closest baseline. Our results demonstrate that generating diverse constraint-satisfying trajectories improves robustness to disturbances and initialization over baselines.


Motion Planning as Online Learning: A Multi-Armed Bandit Approach to Kinodynamic Sampling-Based Planning

arXiv.org Artificial Intelligence

Kinodynamic motion planners allow robots to perform complex manipulation tasks under dynamics constraints or with black-box models. However, they struggle to find high-quality solutions, especially when a steering function is unavailable. This paper presents a novel approach that adaptively biases the sampling distribution to improve the planner's performance. The key contribution is to formulate the sampling bias problem as a non-stationary multi-armed bandit problem, where the arms of the bandit correspond to sets of possible transitions. High-reward regions are identified by clustering transitions from sequential runs of kinodynamic RRT and a bandit algorithm decides what region to sample at each timestep. The paper demonstrates the approach on several simulated examples as well as a 7-degree-of-freedom manipulation task with dynamics uncertainty, suggesting that the approach finds better solutions faster and leads to a higher success rate in execution.


Integrated Object Deformation and Contact Patch Estimation from Visuo-Tactile Feedback

arXiv.org Artificial Intelligence

Reasoning over the interplay between object deformation and force transmission through contact is central to the manipulation of compliant objects. In this paper, we propose Neural Deforming Contact Field (NDCF), a representation that jointly models object deformations and contact patches from visuo-tactile feedback using implicit representations. Representing the object geometry and contact with the environment implicitly allows a single model to predict contact patches of varying complexity. Additionally, learning geometry and contact simultaneously allows us to enforce physical priors, such as ensuring contacts lie on the surface of the object. We propose a neural network architecture to learn a NDCF, and train it using simulated data. We then demonstrate that the learned NDCF transfers directly to the real-world without the need for fine-tuning. We benchmark our proposed approach against a baseline representing geometry and contact patches with point clouds. We find that NDCF performs better on simulated data and in transfer to the real-world.


CHSEL: Producing Diverse Plausible Pose Estimates from Contact and Free Space Data

arXiv.org Artificial Intelligence

This paper proposes a novel method for estimating the set of plausible poses of a rigid object from a set of points with volumetric information, such as whether each point is in free space or on the surface of the object. In particular, we study how pose can be estimated from force and tactile data arising from contact. Using data derived from contact is challenging because it is inherently less information-dense than visual data, and thus the pose estimation problem is severely under-constrained when there are few contacts. Rather than attempting to estimate the true pose of the object, which is not tractable without a large number of contacts, we seek to estimate a plausible set of poses which obey the constraints imposed by the sensor data. Existing methods struggle to estimate this set because they are either designed for single pose estimates or require informative priors to be effective. Our approach to this problem, Constrained pose Hypothesis Set Elimination (CHSEL), has three key attributes: 1) It considers volumetric information, which allows us to account for known free space; 2) It uses a novel differentiable volumetric cost function to take advantage of powerful gradient-based optimization tools; and 3) It uses methods from the Quality Diversity (QD) optimization literature to produce a diverse set of high-quality poses. To our knowledge, QD methods have not been used previously for pose registration. We also show how to update our plausible pose estimates online as more data is gathered by the robot. Our experiments suggest that CHSEL shows large performance improvements over several baseline methods for both simulated and real-world data.


Data-Efficient Learning of Natural Language to Linear Temporal Logic Translators for Robot Task Specification

arXiv.org Artificial Intelligence

To make robots accessible to a broad audience, it is critical to endow them with the ability to take universal modes of communication, like commands given in natural language, and extract a concrete desired task specification, defined using a formal language like linear temporal logic (LTL). In this paper, we present a learning-based approach for translating from natural language commands to LTL specifications with very limited human-labeled training data. This is in stark contrast to existing natural-language to LTL translators, which require large human-labeled datasets, often in the form of labeled pairs of LTL formulas and natural language commands, to train the translator. To reduce reliance on human data, our approach generates a large synthetic training dataset through algorithmic generation of LTL formulas, conversion to structured English, and then exploiting the paraphrasing capabilities of modern large language models (LLMs) to synthesize a diverse corpus of natural language commands corresponding to the LTL formulas. We use this generated data to finetune an LLM and apply a constrained decoding procedure at inference time to ensure the returned LTL formula is syntactically correct. We evaluate our approach on three existing LTL/natural language datasets and show that we can translate natural language commands at 75\% accuracy with far less human data ($\le$12 annotations). Moreover, when training on large human-annotated datasets, our method achieves higher test accuracy (95\% on average) than prior work. Finally, we show the translated formulas can be used to plan long-horizon, multi-stage tasks on a 12D quadrotor.


Focused Adaptation of Dynamics Models for Deformable Object Manipulation

arXiv.org Artificial Intelligence

In order to efficiently learn a dynamics model for a task in a new environment, one can adapt a model learned in a similar source environment. However, existing adaptation methods can fail when the target dataset contains transitions where the dynamics are very different from the source environment. For example, the source environment dynamics could be of a rope manipulated in free-space, whereas the target dynamics could involve collisions and deformation on obstacles. Our key insight is to improve data efficiency by focusing model adaptation on only the regions where the source and target dynamics are similar. In the rope example, adapting the free-space dynamics requires significantly fewer data than adapting the free-space dynamics while also learning collision dynamics. We propose a new method for adaptation that is effective in adapting to regions of similar dynamics. Additionally, we combine this adaptation method with prior work on planning with unreliable dynamics to make a method for data-efficient online adaptation, called FOCUS. We first demonstrate that the proposed adaptation method achieves statistically significantly lower prediction error in regions of similar dynamics on simulated rope manipulation and plant watering tasks. We then show on a bimanual rope manipulation task that FOCUS achieves data-efficient online learning, in simulation and in the real world.


Data Augmentation for Manipulation

arXiv.org Artificial Intelligence

The success of deep learning depends heavily on the availability of large datasets, but in robotic manipulation there are many learning problems for which such datasets do not exist. Collecting these datasets is time-consuming and expensive, and therefore learning from small datasets is an important open problem. Within computer vision, a common approach to a lack of data is data augmentation. Data augmentation is the process of creating additional training examples by modifying existing ones. However, because the types of tasks and data differ, the methods used in computer vision cannot be easily adapted to manipulation. Therefore, we propose a data augmentation method for robotic manipulation. We argue that augmentations should be valid, relevant, and diverse. We use these principles to formalize augmentation as an optimization problem, with the objective function derived from physics and knowledge of the manipulation domain. This method applies rigid body transformations to trajectories of geometric state and action data. We test our method in two scenarios: 1) learning the dynamics of planar pushing of rigid cylinders, and 2) learning a constraint checker for rope manipulation. These two scenarios have different data and label types, yet in both scenarios, training on our augmented data significantly improves performance on downstream tasks. We also show how our augmentation method can be used on real-robot data to enable more data-efficient online learning.


Learning Constraints from Demonstrations

arXiv.org Artificial Intelligence

We extend the learning from demonstration paradigm by providing a method for learning unknown constraints shared across tasks, using demonstrations of the tasks, their cost functions, and knowledge of the system dynamics and control constraints. Given safe demonstrations, our method uses hit-and-run sampling to obtain lower cost, and thus unsafe, trajectories. Both safe and unsafe trajectories are used to obtain a consistent representation of the unsafe set via solving an integer program. Our method generalizes across system dynamics and learns a guaranteed subset of the constraint. We also provide theoretical analysis on what subset of the constraint can be learnable from safe demonstrations. We demonstrate our method on linear and nonlinear system dynamics, show that it can be modified to work with suboptimal demonstrations, and that it can also be used to learn constraints in a feature space.


Bandit-Based Model Selection for Deformable Object Manipulation

arXiv.org Artificial Intelligence

We present a novel approach to deformable object manipulation that does not rely on highly-accurate modeling. The key contribution of this paper is to formulate the task as a Multi-Armed Bandit problem, with each arm representing a model of the deformable object. To "pull" an arm and evaluate its utility, we use the arm's model to generate a velocity command for the gripper(s) holding the object and execute it. As the task proceeds and the object deforms, the utility of each model can change. Our framework estimates these changes and balances exploration of the model set with exploitation of high-utility models. We also propose an approach based on Kalman Filtering for Non-stationary Multi-armed Normal Bandits (KF-MANB) to leverage the coupling between models to learn more from each arm pull. We demonstrate that our method outperforms previous methods on synthetic trials, and performs competitively on several manipulation tasks in simulation.


Learning Cost Functions for Motion Planning of Human-Robot Collaborative Manipulation Tasks from Human-Human Demonstration

AAAI Conferences

In this work we present a method that allows to learn a cost function for motion planning of human-robot collaborative manipulation tasks where the human and the robot manipulate objects simultaneously in close proximity. Our approach is based on inverse optimal control which enables, considering a set of demonstrations, to find a cost function balancing different features. The cost function that is recovered from the human demonstrations is composed of elementary features, which are designed to encode notions such as safely, legibility and efficiency of the manipulation motions. We demonstrate the approach on data gathered from motion capture of human-human manipulation in close proximity of blocks on a table. To demonstrate the feasibility and efficacy of our approach we provide initial test results consisting of learning a cost function and then planning for the human kinematic model used in the learning phase.