Goto

Collaborating Authors

 Belardinelli, Francesco


Strategic Abilities of Forgetful Agents in Stochastic Environments

arXiv.org Artificial Intelligence

In this paper, we investigate the probabilistic variants of the strategy logics ATL and ATL* under imperfect information. Specifically, we present novel decidability and complexity results when the model transitions are stochastic and agents play uniform strategies. That is, the semantics of the logics are based on multi-agent, stochastic transition systems with imperfect information, which combine two sources of uncertainty, namely, the partial observability agents have on the environment, and the likelihood of transitions to occur from a system state. Since the model checking problem is undecidable in general in this setting, we restrict our attention to agents with memoryless (positional) strategies. The resulting setting captures the situation in which agents have qualitative uncertainty of the local state and quantitative uncertainty about the occurrence of future events. We illustrate the usefulness of this setting with meaningful examples.


Bisimulations for Verifying Strategic Abilities with an Application to the ThreeBallot Voting Protocol

arXiv.org Artificial Intelligence

We propose a notion of alternating bisimulation for strategic abilities under imperfect information. The bisimulation preserves formulas of ATL$^*$ for both the {\em objective} and {\em subjective} variants of the state-based semantics with imperfect information, which are commonly used in the modeling and verification of multi-agent systems. Furthermore, we apply the theoretical result to the verification of coercion-resistance in the ThreeBallot voting system, a voting protocol that does not use cryptography. In particular, we show that natural simplifications of an initial model of the protocol are in fact bisimulations of the original model, and therefore satisfy the same ATL$^*$ properties, including coercion-resistance. These simplifications allow the model-checking tool MCMAS to terminate on models with a larger number of voters and candidates, compared with the initial model.


Approximate Model-Based Shielding for Safe Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has shown great potential for solving complex tasks in a variety of domains. However, applying RL to safety-critical systems in the real-world is not easy as many algorithms are sample-inefficient and maximising the standard RL objective comes with no guarantees on worst-case performance. In this paper we propose approximate model-based shielding (AMBS), a principled look-ahead shielding algorithm for verifying the performance of learned RL policies w.r.t. a set of given safety constraints. Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system. We provide a strong theoretical justification for AMBS and demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.


Stability of Multi-Agent Learning: Convergence in Network Games with Many Players

arXiv.org Artificial Intelligence

The behaviour of multi-agent learning in many player games has been shown to display complex dynamics outside of restrictive examples such as network zero-sum games. In addition, it has been shown that convergent behaviour is less likely to occur as the number of players increase. To make progress in resolving this problem, we study Q-Learning dynamics and determine a sufficient condition for the dynamics to converge to a unique equilibrium in any network game. We find that this condition depends on the nature of pairwise interactions and on the network structure, but is explicitly independent of the total number of agents in the game. We evaluate this result on a number of representative network games and show that, under suitable network conditions, stable learning dynamics can be achieved with an arbitrary number of agents.


Characterising Decision Theories with Mechanised Causal Graphs

arXiv.org Artificial Intelligence

How should my own decisions affect my beliefs about the outcomes I expect to achieve? If taking a certain action makes me view myself as a certain type of person, it might affect how I think others view me, and how I view others who are similar to me. This can influence my expected utility calculations and change which action I perceive to be best. Whether and how it should is subject to debate, with contenders for how to think about it including evidential decision theory, causal decision theory, and functional decision theory. In this paper, we show that mechanised causal models can be used to characterise and differentiate the most important decision theories, and generate a taxonomy of different decision theories.


Approximate Shielding of Atari Agents for Safe Exploration

arXiv.org Artificial Intelligence

Balancing exploration and conservatism in the constrained setting is an important problem if we are to use reinforcement learning for meaningful tasks in the real world. In this paper, we propose a principled algorithm for safe exploration based on the concept of shielding. Previous approaches to shielding assume access to a safety-relevant abstraction of the environment or a high-fidelity simulator. Instead, our work is based on latent shielding - another approach that leverages world models to verify policy roll-outs in the latent space of a learned dynamics model. Our novel algorithm builds on this previous work, using safety critics and other additional features to improve the stability and farsightedness of the algorithm. We demonstrate the effectiveness of our approach by running experiments on a small set of Atari games with state dependent safety labels. We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations, and in some cases improves the speed of convergence and quality of the final agent.


Asymptotic Convergence and Performance of Multi-Agent Q-Learning Dynamics

arXiv.org Artificial Intelligence

Achieving convergence of multiple learning agents in general $N$-player games is imperative for the development of safe and reliable machine learning (ML) algorithms and their application to autonomous systems. Yet it is known that, outside the bounds of simple two-player games, convergence cannot be taken for granted. To make progress in resolving this problem, we study the dynamics of smooth Q-Learning, a popular reinforcement learning algorithm which quantifies the tendency for learning agents to explore their state space or exploit their payoffs. We show a sufficient condition on the rate of exploration such that the Q-Learning dynamics is guaranteed to converge to a unique equilibrium in any game. We connect this result to games for which Q-Learning is known to converge with arbitrary exploration rates, including weighted Potential games and weighted zero sum polymatrix games. Finally, we examine the performance of the Q-Learning dynamic as measured by the Time Averaged Social Welfare, and comparing this with the Social Welfare achieved by the equilibrium. We provide a sufficient condition whereby the Q-Learning dynamic will outperform the equilibrium even if the dynamics do not converge.


Approximating Perfect Recall when Model Checking Strategic Abilities: Theory and Applications

Journal of Artificial Intelligence Research

The model checking problem for multi-agent systems against specifications in the alternating-time temporal logic ATL, hence ATL∗, under perfect recall and imperfect information is known to be undecidable. To tackle this problem, in this paper we investigate a notion of bounded recall under incomplete information. We present a novel three-valued semantics for ATL∗ in this setting and analyse the corresponding model checking problem. We show that the three-valued semantics here introduced is an approximation of the classic two-valued semantics, then give a sound, albeit partial, algorithm for model checking two-valued perfect recall via its approximation as three-valued bounded recall. Finally, we extend MCMAS, an open-source model checker for ATL and other agent specifications, to incorporate bounded recall; we illustrate its use and present experimental results.


Do Androids Dream of Electric Fences? Safety-Aware Reinforcement Learning with Latent Shielding

arXiv.org Artificial Intelligence

The growing trend of fledgling reinforcement learning systems making their way into real-world applications has been accompanied by growing concerns for their safety and robustness. In recent years, a variety of approaches have been put forward to address the challenges of safety-aware reinforcement learning; however, these methods often either require a handcrafted model of the environment to be provided beforehand, or that the environment is relatively simple and low-dimensional. We present a novel approach to safety-aware deep reinforcement learning in high-dimensional environments called latent shielding. Latent shielding leverages internal representations of the environment learnt by model-based agents to "imagine" future trajectories and avoid those deemed unsafe. We experimentally demonstrate that this approach leads to improved adherence to formally-defined safety specifications.


In a Nutshell, the Human Asked for This: Latent Goals for Following Temporal Specifications

arXiv.org Artificial Intelligence

We address the problem of building agents whose goal is to satisfy out-of distribution (OOD) multi-task instructions expressed in temporal logic (TL) by using deep reinforcement learning (DRL). Recent works provided evidence that the deep learning architecture is a key feature when teaching a DRL agent to solve OOD tasks in TL. Yet, the studies on their performance are still limited. In this work, we analyse various state-of-the-art (SOTA) architectures that include generalisation mechanisms such as relational layers, the soft-attention mechanism, or hierarchical configurations, when generalising safety-aware tasks expressed in TL. Most importantly, we present a novel deep learning architecture that induces agents to generate latent representations of their current goal given both the human instruction and the current observation from the environment. We find that applying our proposed configuration to SOTA architectures yields significantly stronger performance when executing new tasks in OOD environments.