Goto

Collaborating Authors

 Beheshti, Rahmatollah


Identifying the Leading Factors of Significant Weight Gains Using a New Rule Discovery Method

arXiv.org Artificial Intelligence

Overweight and obesity remain a major global public health concern and identifying the individualized patterns that increase the risk of future weight gains has a crucial role in preventing obesity and numerous sub-sequent diseases associated with obesity. In this work, we use a rule discovery method to study this problem, by presenting an approach that offers genuine interpretability and concurrently optimizes the accuracy(being correct often) and support (applying to many samples) of the identified patterns. Specifically, we extend an established subgroup-discovery method to generate the desired rules of type X -> Y and show how top features can be extracted from the X side, functioning as the best predictors of Y. In our obesity problem, X refers to the extracted features from very large and multi-site EHR data, and Y indicates significant weight gains. Using our method, we also extensively compare the differences and inequities in patterns across 22 strata determined by the individual's gender, age, race, insurance type, neighborhood type, and income level. Through extensive series of experiments, we show new and complementary findings regarding the predictors of future dangerous weight gains.


Time-series Imputation and Prediction with Bi-Directional Generative Adversarial Networks

arXiv.org Machine Learning

Multivariate time-series data are used in many classification and regression predictive tasks, and recurrent models have been widely used for such tasks. Most common recurrent models assume that time-series data elements are of equal length and the ordered observations are recorded at regular intervals. However, real-world time-series data have neither a similar length nor a same number of observations. They also have missing entries, which hinders the performance of predictive tasks. In this paper, we approach these issues by presenting a model for the combined task of imputing and predicting values for the irregularly observed and varying length time-series data with missing entries. Our proposed model (Bi-GAN) uses a bidirectional recurrent network in a generative adversarial setting. The generator is a bidirectional recurrent network that receives actual incomplete data and imputes the missing values. The discriminator attempts to discriminate between the actual and the imputed values in the output of the generator. Our model learns how to impute missing elements in-between (imputation) or outside of the input time steps (prediction), hence working as an effective any-time prediction tool for time-series data. Our method has three advantages to the state-of-the-art methods in the field: (a) single model can be used for both imputation and prediction tasks; (b) it can perform prediction task for time-series of varying length with missing data; (c) it does not require to know the observation and prediction time window during training which provides a flexible length of prediction window for both long-term and short-term predictions. We evaluate our model on two public datasets and on another large real-world electronic health records dataset to impute and predict body mass index (BMI) values in children and show its superior performance in both settings.


Multi-modal Predictive Models of Diabetes Progression

arXiv.org Machine Learning

With the increasing availability of wearable devices, continuous monitoring of individuals' physiological and behavioral patterns has become significantly more accessible. Access to these continuous patterns about individuals' statuses offers an unprecedented opportunity for studying complex diseases and health conditions such as type 2 diabetes (T2D). T2D is a widely common chronic disease that its roots and progression patterns are not fully understood. Predicting the progression of T2D can inform timely and more effective interventions to prevent or manage the disease. In this study, we have used a dataset related to 63 patients with T2D that includes the data from two different types of wearable devices worn by the patients: continuous glucose monitoring (CGM) devices and activity trackers (ActiGraphs). Using this dataset, we created a model for predicting the levels of four major biomarkers related to T2D after a one-year period. We developed a wide and deep neural network and used the data from the demographic information, lab tests, and wearable sensors to create the model. The deep part of our method was developed based on the long short-term memory (LSTM) structure to process the time-series dataset collected by the wearables. In predicting the patterns of the four biomarkers, we have obtained a root mean square error of 1.67% for HBA1c, 6.22 mg/dl for HDL cholesterol, 10.46 mg/dl for LDL cholesterol, and 18.38 mg/dl for Triglyceride. Compared to existing models for studying T2D, our model offers a more comprehensive tool for combining a large variety of factors that contribute to the disease.


Cognitive Social Learners: An Architecture for Modeling Normative Behavior

AAAI Conferences

In many cases, creating long-term solutions to sustainability issues requires not only innovative technology, but also large-scale public adoption of the proposed solutions. Social simulations are a valuable but underutilized tool that can help public policy researchers understand when sustainable practices are likely to make the delicate transition from being an individual choice to becoming a social norm. In this paper, we introduce a new normative multi-agent architecture, Cognitive Social Learners (CSL), that models bottom-up norm emergence through a social learning mechanism, while using BDI (Belief/Desire/Intention) reasoning to handle adoption and compliance. CSL preserves a greater sense of cognitive realism than influence propagation or infectious transmission approaches, enabling the modeling of complex beliefs and contradictory objectives within an agent-based simulation. In this paper, we demonstrate the use of CSL for modeling norm emergence of recycling practices and public participation in a smoke-free campus initiative.