Plotting

 Behdin, Kayhan


Multi-Task Learning for Sparsity Pattern Heterogeneity: A Discrete Optimization Approach

arXiv.org Machine Learning

We extend best-subset selection to linear Multi-Task Learning (MTL), where a set of linear models are jointly trained on a collection of datasets (``tasks''). Allowing the regression coefficients of tasks to have different sparsity patterns (i.e., different supports), we propose a modeling framework for MTL that encourages models to share information across tasks, for a given covariate, through separately 1) shrinking the coefficient supports together, and/or 2) shrinking the coefficient values together. This allows models to borrow strength during variable selection even when the coefficient values differ markedly between tasks. We express our modeling framework as a Mixed-Integer Program, and propose efficient and scalable algorithms based on block coordinate descent and combinatorial local search. We show our estimator achieves statistically optimal prediction rates. Importantly, our theory characterizes how our estimator leverages the shared support information across tasks to achieve better variable selection performance. We evaluate the performance of our method in simulations and two biology applications. Our proposed approaches outperform other sparse MTL methods in variable selection and prediction accuracy. Interestingly, penalties that shrink the supports together often outperform penalties that shrink the coefficient values together. We will release an R package implementing our methods.


Improved Deep Neural Network Generalization Using m-Sharpness-Aware Minimization

arXiv.org Artificial Intelligence

Modern deep learning models are over-parameterized, where the optimization setup strongly affects the generalization performance. A key element of reliable optimization for these systems is the modification of the loss function. Sharpness-Aware Minimization (SAM) modifies the underlying loss function to guide descent methods towards flatter minima, which arguably have better generalization abilities. In this paper, we focus on a variant of SAM known as mSAM, which, during training, averages the updates generated by adversarial perturbations across several disjoint shards of a mini-batch. Recent work suggests that mSAM can outperform SAM in terms of test accuracy. However, a comprehensive empirical study of mSAM is missing from the literature -- previous results have mostly been limited to specific architectures and datasets. To that end, this paper presents a thorough empirical evaluation of mSAM on various tasks and datasets. We provide a flexible implementation of mSAM and compare the generalization performance of mSAM to the performance of SAM and vanilla training on different image classification and natural language processing tasks. We also conduct careful experiments to understand the computational cost of training with mSAM, its sensitivity to hyperparameters and its correlation with the flatness of the loss landscape. Our analysis reveals that mSAM yields superior generalization performance and flatter minima, compared to SAM, across a wide range of tasks without significantly increasing computational costs.


Archetypal Analysis for Sparse Nonnegative Matrix Factorization: Robustness Under Misspecification

arXiv.org Machine Learning

We consider the problem of sparse nonnegative matrix factorization (NMF) with archetypal regularization. The goal is to represent a collection of data points as nonnegative linear combinations of a few nonnegative sparse factors with appealing geometric properties, arising from the use of archetypal regularization. We generalize the notion of robustness studied in Javadi and Montanari (2019) (without sparsity) to the notions of (a) strong robustness that implies each estimated archetype is close to the underlying archetypes and (b) weak robustness that implies there exists at least one recovered archetype that is close to the underlying archetypes. Our theoretical results on robustness guarantees hold under minimal assumptions on the underlying data, and applies to settings where the underlying archetypes need not be sparse. We propose new algorithms for our optimization problem; and present numerical experiments on synthetic and real datasets that shed further insights into our proposed framework and theoretical developments.


Recovering Quantized Data with Missing Information Using Bilinear Factorization and Augmented Lagrangian Method

arXiv.org Machine Learning

In this paper, we propose a novel approach in order to recover a quantized matrix with missing information. We propose a regularized convex cost function composed of a log-likelihood term and a Trace norm term. The Bi-factorization approach and the Augmented Lagrangian Method (ALM) are applied to find the global minimizer of the cost function in order to recover the genuine data. We provide mathematical convergence analysis for our proposed algorithm. In the Numerical Experiments Section, we show the superiority of our method in accuracy and also its robustness in computational complexity compared to the state-of-the-art literature methods.


Transduction with Matrix Completion Using Smoothed Rank Function

arXiv.org Machine Learning

In this paper, we propose two new algorithms for transduction with Matrix Completion (MC) problem. The joint MC and prediction tasks are addressed simultaneously to enhance the accuracy, i.e., the label matrix is concatenated to the data matrix forming a stacked matrix. Assuming the data matrix is of low rank, we propose new recommendation methods by posing the problem as a constrained minimization of the Smoothed Rank Function (SRF). We provide convergence analysis for the proposed algorithms. The simulations are conducted on real datasets in two different scenarios of randomly missing pattern with and without block loss. The results confirm that the accuracy of our proposed methods outperforms those of state-of-the-art methods even up to 10% in low observation rates for the scenario without block loss. Our accuracy in the latter scenario, is comparable to state-of-the-art methods while the complexity of the proposed algorithms are reduced up to 4 times.