Not enough data to create a plot.
Try a different view from the menu above.
Beer, Randall D.
Neural Implementation of Motivated Behavior: Feeding in an Artificial Insect
Beer, Randall D., Chiel, Hillel J.
Most complex behaviors appear to be governed by internal motivational states or drives that modify an animal's responses to its environment. It is therefore of considerable interest to understand the neural basis of these motivational states. Drawing upon work on the neural basis of feeding in the marine mollusc Aplysia, we have developed a heterogeneous artificial neural network for controlling the feeding behavior of a simulated insect. We demonstrate that feeding in this artificial insect shares many characteristics with the motivated behavior of natural animals. 1 INTRODUCTION While an animal's external environment certainly plays an extremely important role in shaping its actions, the behavior of even simpler animals is by no means solely reactive. The response of an animal to food, for example, cannot be explained only in terms of the physical stimuli involved. On two different occasions, the very same animal may behave in completely different ways when presented with seemingly identical pieces of food (e.g.
Neural Implementation of Motivated Behavior: Feeding in an Artificial Insect
Beer, Randall D., Chiel, Hillel J.
Most complex behaviors appear to be governed by internal motivational statesor drives that modify an animal's responses to its environment. It is therefore of considerable interest to understand the neural basis of these motivational states. Drawing upon work on the neural basis of feeding in the marine mollusc Aplysia, we have developed a heterogeneous artificial neural network for controlling thefeeding behavior of a simulated insect. We demonstrate that feeding in this artificial insect shares many characteristics with the motivated behavior of natural animals. 1 INTRODUCTION While an animal's external environment certainly plays an extremely important role in shaping its actions, the behavior of even simpler animals is by no means solely reactive. The response of an animal to food, for example, cannot be explained only in terms of the physical stimuli involved. On two different occasions, the very same animal may behave in completely different ways when presented with seemingly identical pieces of food (e.g.
Neural Implementation of Motivated Behavior: Feeding in an Artificial Insect
Beer, Randall D., Chiel, Hillel J.
Most complex behaviors appear to be governed by internal motivational states or drives that modify an animal's responses to its environment. It is therefore of considerable interest to understand the neural basis of these motivational states. Drawing upon work on the neural basis of feeding in the marine mollusc Aplysia, we have developed a heterogeneous artificial neural network for controlling the feeding behavior of a simulated insect. We demonstrate that feeding in this artificial insect shares many characteristics with the motivated behavior of natural animals. 1 INTRODUCTION While an animal's external environment certainly plays an extremely important role in shaping its actions, the behavior of even simpler animals is by no means solely reactive. The response of an animal to food, for example, cannot be explained only in terms of the physical stimuli involved. On two different occasions, the very same animal may behave in completely different ways when presented with seemingly identical pieces of food (e.g.
Heterogeneous Neural Networks for Adaptive Behavior in Dynamic Environments
Beer, Randall D., Chiel, Hillel J., Sterling, Leon S.
This heterogeneity is crucial to the flexible generation of behavior which is essential for survival in a complex, dynamic environment. It may also provide powerful insights into the design of artificial neural networks. In this paper, we describe a heterogeneous neural network for controlling the wa1king of a simulated insect. This controller is inspired by the neuroethological and neurobiological literature on insect locomotion. It exhibits a variety of statically stable gaits at different speeds simply by varying the tonic activity of a single cell. It can also adapt to perturbations as a natural consequence of its design. INTRODUCTION Even very simple animals exhibit a dazzling variety of complex behaviors which they continuously adapt to the changing circumstances of their environment. Nervous systems evolved in order to generate appropriate behavior in dynamic, uncertain situations and thus insure the survival of the organisms containing them.
Heterogeneous Neural Networks for Adaptive Behavior in Dynamic Environments
Beer, Randall D., Chiel, Hillel J., Sterling, Leon S.
This heterogeneity is crucial to the flexible generation of behavior which is essential for survival in a complex, dynamic environment. It may also provide powerful insights into the design of artificial neural networks. In this paper, we describe a heterogeneous neural network for controlling the wa1king of a simulated insect. This controller is inspired by the neuroethological and neurobiological literature on insect locomotion. It exhibits a variety of statically stable gaits at different speeds simply by varying the tonic activity of a single cell. It can also adapt to perturbations as a natural consequence of its design. INTRODUCTION Even very simple animals exhibit a dazzling variety of complex behaviors which they continuously adapt to the changing circumstances of their environment. Nervous systems evolved in order to generate appropriate behavior in dynamic, uncertain situations and thus insure the survival of the organisms containing them.