Barto, Andrew


Learning Parameterized Skills

arXiv.org Machine Learning

We introduce a method for constructing skills capable of solving tasks drawn from a distribution of parameterized reinforcement learning problems. The method draws example tasks from a distribution of interest and uses the corresponding learned policies to estimate the topology of the lower-dimensional piecewise-smooth manifold on which the skill policies lie. This manifold models how policy parameters change as task parameters vary. The method identifies the number of charts that compose the manifold and then applies non-linear regression in each chart to construct a parameterized skill by predicting policy parameters from task parameters. We evaluate our method on an underactuated simulated robotic arm tasked with learning to accurately throw darts at a parameterized target location.


Autonomous Skill Acquisition on a Mobile Manipulator

AAAI Conferences

We describe a robot system that autonomously acquires skills through interaction with its environment. The robot learns to sequence the execution of a set of innate controllers to solve a task, extracts and retains components of that solution as portable skills, and then transfers those skills to reduce the time required to learn to solve a second task.


Monte Carlo Matrix Inversion and Reinforcement Learning

Neural Information Processing Systems

We describe the relationship between certain reinforcement learning (RL) methods based on dynamic programming (DP) and a class of unorthodox Monte Carlo methods for solving systems of linear equations proposed in the 1950's. These methods recast the solution of the linear system as the expected value of a statistic suitably defined over sample paths of a Markov chain. The significance of our observations lies in arguments (Curtiss, 1954) that these Monte Carlo methods scale better with respect to state-space size than do standard, iterative techniques for solving systems of linear equations. This analysis also establishes convergence rate estimates. Because methods used in RL systems for approximating the evaluation function of a fixed control policy also approximate solutions to systems of linear equations, the connection to these Monte Carlo methods establishes that algorithms very similar to TD algorithms (Sutton, 1988) are asymptotically more efficient in a precise sense than other methods for evaluating policies. Further, all DPbased RL methods have some of the properties of these Monte Carlo algorithms, which suggests that although RL is often perceived to be slow, for sufficiently large problems, it may in fact be more efficient than other known classes of methods capable of producing the same results.


Monte Carlo Matrix Inversion and Reinforcement Learning

Neural Information Processing Systems

We describe the relationship between certain reinforcement learning (RL) methods based on dynamic programming (DP) and a class of unorthodox Monte Carlo methods for solving systems of linear equations proposed in the 1950's. These methods recast the solution of the linear system as the expected value of a statistic suitably defined over sample paths of a Markov chain. The significance of our observations lies in arguments (Curtiss, 1954) that these Monte Carlo methods scale better with respect to state-space size than do standard, iterative techniques for solving systems of linear equations. This analysis also establishes convergence rate estimates. Because methods used in RL systems for approximating the evaluation function of a fixed control policy also approximate solutions to systems of linear equations, the connection to these Monte Carlo methods establishes that algorithms very similar to TD algorithms (Sutton, 1988) are asymptotically more efficient in a precise sense than other methods for evaluating policies. Further, all DPbased RL methods have some of the properties of these Monte Carlo algorithms, that although RL is often perceived towhich suggests be slow, for sufficiently large problems, it may in fact be more efficient than other known classes of methods capable of producing the same results.