Not enough data to create a plot.
Try a different view from the menu above.
Bartels, Andreas M.
Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input
Tang, Akaysha C., Bartels, Andreas M., Sejnowski, Terrence J.
Recently, there has been a vigorous debate concerning the nature of neural coding (Rieke et al. 1996; Stevens and Zador 1995; Shadlen and Newsome 1994). The prevailing viewhas been that the mean firing rate conveys all information about the sensory stimulus in a spike train and the precise timing of the individual spikes is noise. This belief is, in part, based on a lack of correlation between the precise timing ofthe spikes and the sensory qualities of the stimulus under study, particularly, on a lack of spike timing repeatability when identical stimulation is delivered. This view has been challenged by a number of recent studies, in which highly repeatable temporal patterns of spikes can be observed both in vivo (Bair and Koch 1996; Abeles et al. 1993) and in vitro (Mainen and Sejnowski 1994). Furthermore, application ofinformation theory to the coding problem in the frog and house fly (Bialek et al. 1991; Bialek and Rieke 1992) suggested that additional information could be extracted from spike timing. In the absence of direct evidence for a timing code in the cerebral cortex, the role of spike timing in neural coding remains controversial.
Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input
Tang, Akaysha C., Bartels, Andreas M., Sejnowski, Terrence J.
Recently, there has been a vigorous debate concerning the nature of neural coding (Rieke et al. 1996; Stevens and Zador 1995; Shadlen and Newsome 1994). The prevailing view has been that the mean firing rate conveys all information about the sensory stimulus in a spike train and the precise timing of the individual spikes is noise. This belief is, in part, based on a lack of correlation between the precise timing of the spikes and the sensory qualities of the stimulus under study, particularly, on a lack of spike timing repeatability when identical stimulation is delivered. This view has been challenged by a number of recent studies, in which highly repeatable temporal patterns of spikes can be observed both in vivo (Bair and Koch 1996; Abeles et al. 1993) and in vitro (Mainen and Sejnowski 1994). Furthermore, application of information theory to the coding problem in the frog and house fly (Bialek et al. 1991; Bialek and Rieke 1992) suggested that additional information could be extracted from spike timing. In the absence of direct evidence for a timing code in the cerebral cortex, the role of spike timing in neural coding remains controversial.