Goto

Collaborating Authors

 Barez, Fazl


Sparse Autoencoders Reveal Universal Feature Spaces Across Large Language Models

arXiv.org Artificial Intelligence

We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones. This makes it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics like Singular Value Canonical Correlation Analysis to analyze these SAE features across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality.


Towards Interpreting Visual Information Processing in Vision-Language Models

arXiv.org Artificial Intelligence

Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual token representations across layers, and the mechanism of integrating visual information for predictions. Through ablation studies, we demonstrated that object identification accuracy drops by over 70% when object-specific tokens are removed. We observed that visual token representations become increasingly interpretable in the vocabulary space across layers, suggesting an alignment with textual tokens corresponding to image content. Finally, we found that the model extracts object information from these refined representations at the last token position for prediction, mirroring the process in text-only language models for factual association tasks. These findings provide crucial insights into how VLMs process and integrate visual information, bridging the gap between our understanding of language and vision models, and paving the way for more interpretable and controllable multimodal systems. Vision-Language Models (VLMs) take an image and text as input, and generate a text output. They have become powerful tools in processing and understanding text and images, enabling a wide range of applications from question answering to image captioning (Liu et al., 2023b; Li et al., 2023; Alayrac et al., 2022).


Sycophancy to Subterfuge: Investigating Reward-Tampering in Large Language Models

arXiv.org Artificial Intelligence

In reinforcement learning, specification gaming occurs when AI systems learn undesired behaviors that are highly rewarded due to misspecified training goals. Specification gaming can range from simple behaviors like sycophancy to sophisticated and pernicious behaviors like reward-tampering, where a model directly modifies its own reward mechanism. However, these more pernicious behaviors may be too complex to be discovered via exploration. In this paper, we study whether Large Language Model (LLM) assistants which find easily discovered forms of specification gaming will generalize to perform rarer and more blatant forms, up to and including reward-tampering. We construct a curriculum of increasingly sophisticated gameable environments and find that training on early-curriculum environments leads to more specification gaming on remaining environments. Strikingly, a small but non-negligible proportion of the time, LLM assistants trained on the full curriculum generalize zero-shot to directly rewriting their own reward function. Retraining an LLM not to game early-curriculum environments mitigates, but does not eliminate, reward-tampering in later environments. Moreover, adding harmlessness training to our gameable environments does not prevent reward-tampering. These results demonstrate that LLMs can generalize from common forms of specification gaming to more pernicious reward tampering and that such behavior may be nontrivial to remove.


Risks and Opportunities of Open-Source Generative AI

arXiv.org Artificial Intelligence

Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. This regulation is likely to put at risk the budding field of open-source generative AI. Using a three-stage framework for Gen AI development (near, mid and long-term), we analyze the risks and opportunities of open-source generative AI models with similar capabilities to the ones currently available (near to mid-term) and with greater capabilities (long-term). We argue that, overall, the benefits of open-source Gen AI outweigh its risks. As such, we encourage the open sourcing of models, training and evaluation data, and provide a set of recommendations and best practices for managing risks associated with open-source generative AI.


Near to Mid-term Risks and Opportunities of Open-Source Generative AI

arXiv.org Artificial Intelligence

In the next few years, applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. This regulation is likely to put at risk the budding field of open-source Generative AI. We argue for the responsible open sourcing of generative AI models in the near and medium term. To set the stage, we first introduce an AI openness taxonomy system and apply it to 40 current large language models. We then outline differential benefits and risks of open versus closed source AI and present potential risk mitigation, ranging from best practices to calls for technical and scientific contributions. We hope that this report will add a much needed missing voice to the current public discourse on near to mid-term AI safety and other societal impact.


Visualizing Neural Network Imagination

arXiv.org Artificial Intelligence

In certain situations, neural networks will represent environment states in their hidden activations. Our goal is to visualize what environment states the networks are representing. After training, we apply the decoder to the intermediate representations of the network to visualize what they represent. We define a quantitative interpretability metric and use it to demonstrate that hidden states can be highly interpretable on a simple task. We also develop autoencoder and adversarial techniques and show that benefit interpretability.


Interpreting Context Look-ups in Transformers: Investigating Attention-MLP Interactions

arXiv.org Artificial Intelligence

In this paper, we investigate the interplay between attention heads and specialized "next-token" neurons in the Multilayer Perceptron that predict specific tokens. By prompting an LLM like GPT-4 to explain these model internals, we can elucidate attention mechanisms that activate certain next-token neurons. Our analysis identifies attention heads that recognize contexts relevant to predicting a particular token, activating the associated neuron through the residual connection. We focus specifically on heads in earlier layers consistently activating the same next-token neuron across similar prompts. Exploring these differential activation patterns reveals that heads that specialize for distinct linguistic contexts are tied to generating certain tokens. Overall, our method combines neural explanations and probing isolated components to illuminate how attention enables context-dependent, specialized processing in LLMs.


Beyond Training Objectives: Interpreting Reward Model Divergence in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) fine-tuned by reinforcement learning from human feedback (RLHF) are becoming more widely deployed. We coin the term $\textit{Implicit Reward Model}$ (IRM) to refer to the changes that occur to an LLM during RLHF that result in high-reward generations. We interpret IRMs, and measure their divergence from the RLHF reward model used in the fine-tuning process that induced them. By fitting a linear function to an LLM's IRM, a reward model with the same type signature as the RLHF reward model is constructed, allowing for direct comparison. Additionally, we validate our construction of the IRM through cross-comparison with classifications of features generated by an LLM based on their relevance to the RLHF reward model. Better comprehending IRMs can help minimize discrepencies between LLM behavior and training objectives, which we believe to be an essential component of the $\textit{safety}$ and $\textit{alignment}$ of LLMs.


Increasing Trust in Language Models through the Reuse of Verified Circuits

arXiv.org Artificial Intelligence

Language Models (LMs) are increasingly used for a wide range of prediction tasks, but their training can often neglect rare edge cases, reducing their reliability. Here, we define a stringent standard of trustworthiness whereby the task algorithm and circuit implementation must be verified, accounting for edge cases, with no known failure modes. We show that a transformer model can be trained to meet this standard if built using mathematically and logically specified frameworks. In this paper, we fully verify a model for n-digit integer addition. To exhibit the reusability of verified modules, we insert the trained integer addition model into an untrained model and train the combined model to perform both addition and subtraction. We find extensive reuse of the addition circuits for both tasks, easing verification of the more complex subtractor model. We discuss how inserting verified task modules into LMs can leverage model reuse to improve verifiability and trustworthiness of language models built using them. The reuse of verified circuits reduces the effort to verify more complex composite models which we believe to be a significant step towards safety of language models.


Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

arXiv.org Artificial Intelligence

Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoor behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoor behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.