Not enough data to create a plot.
Try a different view from the menu above.
Bardes, Adrien
No Free Lunch in Self Supervised Representation Learning
Bendidi, Ihab, Bardes, Adrien, Cohen, Ethan, Lamiable, Alexis, Bollot, Guillaume, Genovesio, Auguste
Self-supervised representation learning in computer vision relies heavily on hand-crafted image transformations to learn meaningful and invariant features. However few extensive explorations of the impact of transformation design have been conducted in the literature. In particular, the dependence of downstream performances to transformation design has been established, but not studied in depth. In this work, we explore this relationship, its impact on a domain other than natural images, and show that designing the transformations can be viewed as a form of supervision. First, we demonstrate that not only do transformations have an effect on downstream performance and relevance of clustering, but also that each category in a supervised dataset can be impacted in a different way. Following this, we explore the impact of transformation design on microscopy images, a domain where the difference between classes is more subtle and fuzzy than in natural images. In this case, we observe a greater impact on downstream tasks performances. Finally, we demonstrate that transformation design can be leveraged as a form of supervision, as careful selection of these by a domain expert can lead to a drastic increase in performance on a given downstream task.
VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning
Bardes, Adrien, Ponce, Jean, LeCun, Yann
Recent self-supervised methods for image representation learning are based on maximizing the agreement between embedding vectors from different views of the same image. A trivial solution is obtained when the encoder outputs constant vectors. This collapse problem is often avoided through implicit biases in the learning architecture, that often lack a clear justification or interpretation. In this paper, we introduce VICReg (Variance-Invariance-Covariance Regularization), a method that explicitly avoids the collapse problem with a simple regularization term on the variance of the embeddings along each dimension individually. VICReg combines the variance term with a decorrelation mechanism based on redundancy reduction and covariance regularization, and achieves results on par with the state of the art on several downstream tasks. In addition, we show that incorporating our new variance term into other methods helps stabilize the training and leads to performance improvements.