Goto

Collaborating Authors

 Barber, David


Generative Neural Machine Translation

Neural Information Processing Systems

We introduce Generative Neural Machine Translation (GNMT), a latent variable architecture which is designed to model the semantics of the source and target sentences. We modify an encoder-decoder translation model by adding a latent variable as a language agnostic representation which is encouraged to learn the meaning of the sentence. GNMT achieves competitive BLEU scores on pure translation tasks, and is superior when there are missing words in the source sentence. We augment the model to facilitate multilingual translation and semi-supervised learning without adding parameters. This framework significantly reduces overfitting when there is limited paired data available, and is effective for translating between pairs of languages not seen during training.


Variational f-divergence Minimization

arXiv.org Machine Learning

Probabilistic models are often trained by maximum likelihood, which corresponds to minimizing a specific f-divergence between the model and data distribution. In light of recent successes in training Generative Adversarial Networks, alternative non-likelihood training criteria have been proposed. Whilst not necessarily statistically efficient, these alternatives may better match user requirements such as sharp image generation. A general variational method for training probabilistic latent variable models using maximum likelihood is well established; however, how to train latent variable models using other f-divergences is comparatively unknown. We discuss a variational approach that, when combined with the recently introduced Spread Divergence, can be applied to train a large class of latent variable models using any f-divergence.


Gaussian Mean Field Regularizes by Limiting Learned Information

arXiv.org Machine Learning

Variational inference with a factorized Gaussian posterior estimate is a widely used approach for learning parameters and hidden variables. Empirically, a regularizing effect can be observed that is poorly understood. In this work, we show how mean field inference improves generalization by limiting mutual information between learned parameters and the data through noise. We quantify a maximum capacity when the posterior variance is either fixed or learned and connect it to generalization error, even when the KL-divergence in the objective is rescaled. Our experiments demonstrate that bounding information between parameters and data effectively regularizes neural networks on both supervised and unsupervised tasks.


Practical Lossless Compression with Latent Variables using Bits Back Coding

arXiv.org Machine Learning

Deep latent variable models have seen recent success in many data domains. Lossless compression is an application of these models which, despite having the potential to be highly useful, has yet to be implemented in a practical manner. We present `Bits Back with ANS' (BB-ANS), a scheme to perform lossless compression with latent variable models at a near optimal rate. We demonstrate this scheme by using it to compress the MNIST dataset with a variational auto-encoder model (VAE), achieving compression rates superior to standard methods with only a simple VAE. Given that the scheme is highly amenable to parallelization, we conclude that with a sufficiently high quality generative model this scheme could be used to achieve substantial improvements in compression rate with acceptable running time. We make our implementation available open source at https://github.com/bits-back/bits-back .


Modular Networks: Learning to Decompose Neural Computation

Neural Information Processing Systems

Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts.


Generative Neural Machine Translation

Neural Information Processing Systems

We introduce Generative Neural Machine Translation (GNMT), a latent variable architecture which is designed to model the semantics of the source and target sentences. We modify an encoder-decoder translation model by adding a latent variable as a language agnostic representation which is encouraged to learn the meaning of the sentence. GNMT achieves competitive BLEU scores on pure translation tasks, and is superior when there are missing words in the source sentence. We augment the model to facilitate multilingual translation and semi-supervised learning without adding parameters. This framework significantly reduces overfitting when there is limited paired data available, and is effective for translating between pairs of languages not seen during training.


Generative Neural Machine Translation

Neural Information Processing Systems

We introduce Generative Neural Machine Translation (GNMT), a latent variable architecture which is designed to model the semantics of the source and target sentences. We modify an encoder-decoder translation model by adding a latent variable as a language agnostic representation which is encouraged to learn the meaning of the sentence. GNMT achieves competitive BLEU scores on pure translation tasks, and is superior when there are missing words in the source sentence. We augment the model to facilitate multilingual translation and semi-supervised learning without adding parameters. This framework significantly reduces overfitting when there is limited paired data available, and is effective for translating between pairs of languages not seen during training.


Modular Networks: Learning to Decompose Neural Computation

Neural Information Processing Systems

Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts.


Online Structured Laplace Approximations for Overcoming Catastrophic Forgetting

Neural Information Processing Systems

We introduce the Kronecker factored online Laplace approximation for overcoming catastrophic forgetting in neural networks. The method is grounded in a Bayesian online learning framework, where we recursively approximate the posterior after every task with a Gaussian, leading to a quadratic penalty on changes to the weights. The Laplace approximation requires calculating the Hessian around a mode, which is typically intractable for modern architectures. In order to make our method scalable, we leverage recent block-diagonal Kronecker factored approximations to the curvature. Our algorithm achieves over 90% test accuracy across a sequence of 50 instantiations of the permuted MNIST dataset, substantially outperforming related methods for overcoming catastrophic forgetting.


Spread Divergences

arXiv.org Machine Learning

For distributions p and q with different support, the divergence D(p q) generally will not exist. We define a spread divergence D(p q) on modified p and q and describe sufficient conditions for the existence of such a divergence. We give examples of using a spread divergence to train implicit generative models, including linearmodels (Principal Components Analysis and Independent Components Analysis) and nonlinear models (Deep Generative Networks).