Plotting

 Barber, David


Modular Networks: Learning to Decompose Neural Computation

arXiv.org Artificial Intelligence

Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts.


Stochastic Variational Optimization

arXiv.org Machine Learning

Variational Optimization forms a differentiable upper bound on an objective. We show that approaches such as Natural Evolution Strategies and Gaussian Perturbation, are special cases of Variational Optimization in which the expectations are approximated by Gaussian sampling. These approaches are of particular interest because they are parallelizable. We calculate the approximate bias and variance of the corresponding gradient estimators and demonstrate that using antithetic sampling or a baseline is crucial to mitigate their problems. We contrast these methods with an alternative parallelizable method, namely Directional Derivatives. We conclude that, for differentiable objectives, using Directional Derivatives is preferable to using Variational Optimization to perform parallel Stochastic Gradient Descent.


Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers

arXiv.org Machine Learning

Online Multi-Object Tracking (MOT) from videos is a challenging computer vision task which has been extensively studied for decades. Most of the existing MOT algorithms are based on the Tracking-by-Detection (TBD) paradigm combined with popular machine learning approaches which largely reduce the human effort to tune algorithm parameters. However, the commonly used supervised learning approaches require the labeled data (e.g., bounding boxes), which is expensive for videos. Also, the TBD framework is usually suboptimal since it is not end-to-end, i.e., it considers the task as detection and tracking, but not jointly. To achieve both label-free and end-to-end learning of MOT, we propose a Tracking-by-Animation framework, where a differentiable neural model first tracks objects from input frames and then animates these objects into reconstructed frames. Learning is then driven by the reconstruction error through backpropagation. We further propose a Reprioritized Attentive Tracking to improve the robustness of data association. Experiments conducted on both synthetic and real video datasets show the potential of the proposed model.


Generative Neural Machine Translation

arXiv.org Machine Learning

We introduce Generative Neural Machine Translation (GNMT), a latent variable architecture which is designed to model the semantics of the source and target sentences. We modify an encoder-decoder translation model by adding a latent variable as a language agnostic representation which is encouraged to learn the meaning of the sentence. GNMT achieves competitive BLEU scores on pure translation tasks, and is superior when there are missing words in the source sentence. We augment the model to facilitate multilingual translation and semi-supervised learning without adding parameters. This framework significantly reduces overfitting when there is limited paired data available, and is effective for translating between pairs of languages not seen during training.


Generating Sentences Using a Dynamic Canvas

arXiv.org Machine Learning

We introduce the Attentive Unsupervised Text (W)riter (AUTR), which is a word level generative model for natural language. It uses a recurrent neural network with a dynamic attention and canvas memory mechanism to iteratively construct sentences. By viewing the state of the memory at intermediate stages and where the model is placing its attention, we gain insight into how it constructs sentences. We demonstrate that AUTR learns a meaningful latent representation for each sentence, and achieves competitive log-likelihood lower bounds whilst being computationally efficient. It is effective at generating and reconstructing sentences, as well as imputing missing words.


Improving latent variable descriptiveness with AutoGen

arXiv.org Machine Learning

Powerful generative models, particularly in Natural Language Modelling, are commonly trained by maximizing a variational lower bound on the data log likelihood. These models often suffer from poor use of their latent variable, with ad-hoc annealing factors used to encourage retention of information in the latent variable. We discuss an alternative and general approach to latent variable modelling, based on an objective that combines the data log likelihood as well as the likelihood of a perfect reconstruction through an autoencoder. Tying these together ensures by design that the latent variable captures information about the observations, whilst retaining the ability to generate well. Interestingly, though this approach is a priori unrelated to VAEs, the lower bound attained is identical to the standard VAE bound but with the addition of a simple pre-factor; thus, providing a formal interpretation of the commonly used, ad-hoc pre-factors in training VAEs.


Gaussian mixture models with Wasserstein distance

arXiv.org Machine Learning

Generative models with both discrete and continuous latent variables are highly motivated by the structure of many real-world data sets. They present, however, subtleties in training often manifesting in the discrete latent being under leveraged. In this paper, we show that such models are more amenable to training when using the Optimal Transport framework of Wasserstein Autoencoders. We find our discrete latent variable to be fully leveraged by the model when trained, without any modifications to the objective function or significant fine tuning. Our model generates comparable samples to other approaches while using relatively simple neural networks, since the discrete latent variable carries much of the descriptive burden. Furthermore, the discrete latent provides significant control over generation.


Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting

arXiv.org Machine Learning

We introduce the Kronecker factored online Laplace approximation for overcoming catastrophic forgetting in neural networks. The method is grounded in a Bayesian online learning framework, where we recursively approximate the posterior after every task with a Gaussian, leading to a quadratic penalty on changes to the weights. The Laplace approximation requires calculating the Hessian around a mode, which is typically intractable for modern architectures. In order to make our method scalable, we leverage recent block-diagonal Kronecker factored approximations to the curvature. Our algorithm achieves over 90% test accuracy across a sequence of 50 instantiations of the permuted MNIST dataset, substantially outperforming related methods for overcoming catastrophic forgetting.


Generating Sentences Using a Dynamic Canvas

AAAI Conferences

We introduce the Attentive Unsupervised Text (W)riter (AUTR), which is a word level generative model for natural language. It uses a recurrent neural network with a dynamic attention and canvas memory mechanism to iteratively construct sentences. By viewing the state of the memory at intermediate stages and where the model is placing its attention, we gain insight into how it constructs sentences. We demonstrate that AUTR learns a meaningful latent representation for each sentence, and achieves competitive log-likelihood lower bounds whilst being computationally efficient. It is effective at generating and reconstructing sentences, as well as imputing missing words.


Wider and Deeper, Cheaper and Faster: Tensorized LSTMs for Sequence Learning

Neural Information Processing Systems

Long Short-Term Memory (LSTM) is a popular approach to boosting the ability of Recurrent Neural Networks to store longer term temporal information. The capacity of an LSTM network can be increased by widening and adding layers. However, usually the former introduces additional parameters, while the latter increases the runtime. As an alternative we propose the Tensorized LSTM in which the hidden states are represented by tensors and updated via a cross-layer convolution. By increasing the tensor size, the network can be widened efficiently without additional parameters since the parameters are shared across different locations in the tensor; by delaying the output, the network can be deepened implicitly with little additional runtime since deep computations for each timestep are merged into temporal computations of the sequence. Experiments conducted on five challenging sequence learning tasks show the potential of the proposed model.