Goto

Collaborating Authors

 Bao, Guangsheng


Token-Level Fitting Issues of Seq2seq Models

arXiv.org Artificial Intelligence

Sequence-to-sequence (seq2seq) models have been widely used for natural language processing, computer vision, and other deep learning tasks. We find that seq2seq models trained with early-stopping suffer from issues at the token level. In particular, while some tokens in the vocabulary demonstrate overfitting, others underfit when training is stopped. Experiments show that the phenomena are pervasive in different models, even in fine-tuned large pretrained-models. We identify three major factors that influence token-level fitting, which include token frequency, parts-of-speech, and prediction discrepancy. Further, we find that external factors such as language, model size, domain, data scale, and pretraining can also influence the fitting of tokens.


Target-Side Augmentation for Document-Level Machine Translation

arXiv.org Artificial Intelligence

Document-level machine translation faces the challenge of data sparsity due to its long input length and a small amount of training data, increasing the risk of learning spurious patterns. To address this challenge, we propose a target-side augmentation method, introducing a data augmentation (DA) model to generate many potential translations for each source document. Learning on these wider range translations, an MT model can learn a smoothed distribution, thereby reducing the risk of data sparsity. We demonstrate that the DA model, which estimates the posterior distribution, largely improves the MT performance, outperforming the previous best system by 2.30 s-BLEU on News and achieving new state-of-the-art on News and Europarl benchmarks. Our code is available at https://github.com/baoguangsheng/target-side-augmentation.