Goto

Collaborating Authors

 Bao, Forrest Sheng


A New Approach to Automated Epileptic Diagnosis Using EEG and Probabilistic Neural Network

arXiv.org Artificial Intelligence

Epilepsy is one of the most common neurological disorders that greatly impair patient' daily lives. Traditional epileptic diagnosis relies on tedious visual screening by neurologists from lengthy EEG recording that requires the presence of seizure (ictal) activities. Nowadays, there are many systems helping the neurologists to quickly find interesting segments of the lengthy signal by automatic seizure detection. However, we notice that it is very difficult, if not impossible, to obtain long-term EEG data with seizure activities for epilepsy patients in areas lack of medical resources and trained neurologists. Therefore, we propose to study automated epileptic diagnosis using interictal EEG data that is much easier to collect than ictal data. The authors are not aware of any report on automated EEG diagnostic system that can accurately distinguish patients' interictal EEG from the EEG of normal people. The research presented in this paper, therefore, aims to develop an automated diagnostic system that can use interictal EEG data to diagnose whether the person is epileptic. Such a system should also detect seizure activities for further investigation by doctors and potential patient monitoring. To develop such a system, we extract four classes of features from the EEG data and build a Probabilistic Neural Network (PNN) fed with these features. Leave-one-out cross-validation (LOO-CV) on a widely used epileptic-normal data set reflects an impressive 99.5% accuracy of our system on distinguishing normal people's EEG from patient's interictal EEG. We also find our system can be used in patient monitoring (seizure detection) and seizure focus localization, with 96.7% and 77.5% accuracy respectively on the data set.


A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network

arXiv.org Artificial Intelligence

In this paper, we employ Probabilistic Neural Network (PNN) with image and data processing techniques to implement a general purpose automated leaf recognition algorithm. 12 leaf features are extracted and orthogonalized into 5 principal variables which consist the input vector of the PNN. The PNN is trained by 1800 leaves to classify 32 kinds of plants with an accuracy greater than 90%. Compared with other approaches, our algorithm is an accurate artificial intelligence approach which is fast in execution and easy in implementation.


A Novel Model of Working Set Selection for SMO Decomposition Methods

arXiv.org Artificial Intelligence

In the process of training Support Vector Machines (SVMs) by decomposition methods, working set selection is an important technique, and some exciting schemes were employed into this field. To improve working set selection, we propose a new model for working set selection in sequential minimal optimization (SMO) decomposition methods. In this model, it selects B as working set without reselection. Some properties are given by simple proof, and experiments demonstrate that the proposed method is in general faster than existing methods.