Plotting

 Banerjee, Biplab


Visual Question Answering in Remote Sensing with Cross-Attention and Multimodal Information Bottleneck

arXiv.org Artificial Intelligence

In this research, we deal with the problem of visual question answering (VQA) in remote sensing. While remotely sensed images contain information significant for the task of identification and object detection, they pose a great challenge in their processing because of high dimensionality, volume and redundancy. Furthermore, processing image information jointly with language features adds additional constraints, such as mapping the corresponding image and language features. To handle this problem, we propose a cross attention based approach combined with information maximization. The CNN-LSTM based cross-attention highlights the information in the image and language modalities and establishes a connection between the two, while information maximization learns a low dimensional bottleneck layer, that has all the relevant information required to carry out the VQA task. We evaluate our method on two VQA remote sensing datasets of different resolutions. For the high resolution dataset, we achieve an overall accuracy of 79.11% and 73.87% for the two test sets while for the low resolution dataset, we achieve an overall accuracy of 85.98%.


USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense Active Learning for Super-resolution

arXiv.org Artificial Intelligence

Dense regression is a widely used approach in computer vision for tasks such as image super-resolution, enhancement, depth estimation, etc. However, the high cost of annotation and labeling makes it challenging to achieve accurate results. We propose incorporating active learning into dense regression models to address this problem. Active learning allows models to select the most informative samples for labeling, reducing the overall annotation cost while improving performance. Despite its potential, active learning has not been widely explored in high-dimensional computer vision regression tasks like super-resolution. We address this research gap and propose a new framework called USIM-DAL that leverages the statistical properties of colour images to learn informative priors using probabilistic deep neural networks that model the heteroscedastic predictive distribution allowing uncertainty quantification. Moreover, the aleatoric uncertainty from the network serves as a proxy for error that is used for active learning. Our experiments on a wide variety of datasets spanning applications in natural images (visual genome, BSD100), medical imaging (histopathology slides), and remote sensing (satellite images) demonstrate the efficacy of the newly proposed USIM-DAL and superiority over several dense regression active learning methods.


Prototypical quadruplet for few-shot class incremental learning

arXiv.org Artificial Intelligence

Scarcity of data and incremental learning of new tasks pose two major bottlenecks for many modern computer vision algorithms. The phenomenon of catastrophic forgetting, i.e., the model's inability to classify previously learned data after training with new batches of data, is a major challenge. Conventional methods address catastrophic forgetting while compromising the current session's training. Generative replay-based approaches, such as generative adversarial networks (GANs), have been proposed to mitigate catastrophic forgetting, but training GANs with few samples may lead to instability. To address these challenges, we propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss. Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes, by updating previous session class prototypes to represent the true class mean, which is crucial for our nearest class mean classification strategy. We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.


MultiScale Probability Map guided Index Pooling with Attention-based learning for Road and Building Segmentation

arXiv.org Artificial Intelligence

Efficient road and building footprint extraction from satellite images are predominant in many remote sensing applications. However, precise segmentation map extraction is quite challenging due to the diverse building structures camouflaged by trees, similar spectral responses between the roads and buildings, and occlusions by heterogeneous traffic over the roads. Existing convolutional neural network (CNN)-based methods focus on either enriched spatial semantics learning for the building extraction or the fine-grained road topology extraction. The profound semantic information loss due to the traditional pooling mechanisms in CNN generates fragmented and disconnected road maps and poorly segmented boundaries for the densely spaced small buildings in complex surroundings. In this paper, we propose a novel attention-aware segmentation framework, Multi-Scale Supervised Dilated Multiple-Path Attention Network (MSSDMPA-Net), equipped with two new modules Dynamic Attention Map Guided Index Pooling (DAMIP) and Dynamic Attention Map Guided Spatial and Channel Attention (DAMSCA) to precisely extract the building footprints and road maps from remotely sensed images. DAMIP mines the salient features by employing a novel index pooling mechanism to retain important geometric information. On the other hand, DAMSCA simultaneously extracts the multi-scale spatial and spectral features. Besides, using dilated convolution and multi-scale deep supervision in optimizing MSSDMPA-Net helps achieve stellar performance. Experimental results over multiple benchmark building and road extraction datasets, ensures MSSDMPA-Net as the state-of-the-art (SOTA) method for building and road extraction.


A Novel Actor Dual-Critic Model for Remote Sensing Image Captioning

arXiv.org Artificial Intelligence

We deal with the problem of generating textual captions from optical remote sensing (RS) images using the notion of deep reinforcement learning. Due to the high inter-class similarity in reference sentences describing remote sensing data, jointly encoding the sentences and images encourages prediction of captions that are semantically more precise than the ground truth in many cases. To this end, we introduce an Actor Dual-Critic training strategy where a second critic model is deployed in the form of an encoder-decoder RNN to encode the latent information corresponding to the original and generated captions. While all actor-critic methods use an actor to predict sentences for an image and a critic to provide rewards, our proposed encoder-decoder RNN guarantees high-level comprehension of images by sentence-to-image translation. We observe that the proposed model generates sentences on the test data highly similar to the ground truth and is successful in generating even better captions in many critical cases. Extensive experiments on the benchmark Remote Sensing Image Captioning Dataset (RSICD) and the UCM-captions dataset confirm the superiority of the proposed approach in comparison to the previous state-of-the-art where we obtain a gain of sharp increments in both the ROUGE-L and CIDEr measures.


CognitiveCNN: Mimicking Human Cognitive Models to resolve Texture-Shape Bias

arXiv.org Artificial Intelligence

Recent works demonstrate the texture bias in Convolutional Neural Networks (CNNs), conflicting with early works claiming that networks identify objects using shape. It is commonly believed that the cost function forces the network to take a greedy route to increase accuracy using texture, failing to explore any global statistics. We propose a novel intuitive architecture, namely CognitiveCNN, inspired from feature integration theory in psychology to utilise human-interpretable feature like shape, texture, edges etc. to reconstruct, and classify the image. We define two metrics, namely TIC and RIC to quantify the importance of each stream using attention maps. We introduce a regulariser which ensures that the contribution of each feature is same for any task, as it is for reconstruction; and perform experiments to show the resulting boost in accuracy and robustness besides imparting explainability. Lastly, we adapt these ideas to conventional CNNs and propose Augmented Cognitive CNN to achieve superior performance in object recognition.