Not enough data to create a plot.
Try a different view from the menu above.
Banerjee, Arindam
Bethe-ADMM for Tree Decomposition based Parallel MAP Inference
Fu, Qiang, Wang, Huahua, Banerjee, Arindam
We consider the problem of maximum a posteriori (MAP) inference in discrete graphical models. We present a parallel MAP inference algorithm called Bethe-ADMM based on two ideas: tree-decomposition of the graph and the alternating direction method of multipliers (ADMM). However, unlike the standard ADMM, we use an inexact ADMM augmented with a Bethe-divergence based proximal function, which makes each subproblem in ADMM easy to solve in parallel using the sum-product algorithm. We rigorously prove global convergence of Bethe-ADMM. The proposed algorithm is extensively evaluated on both synthetic and real datasets to illustrate its effectiveness. Further, the parallel Bethe-ADMM is shown to scale almost linearly with increasing number of cores.
Online Lazy Updates for Portfolio Selection with Transaction Costs
Das, Puja (University of Minnesota, Twin Cities) | Johnson, Nicholas (University of Minnesota, Twin Cities) | Banerjee, Arindam (University of Minnesota, Twin Cities)
A major challenge for stochastic optimization is the cost of updating model parameters especially when the number of parameters is large. Updating parameters frequently can prove to be computationally or monetarily expensive. In this paper, we introduce an efficient primal-dual based online algorithm that performs lazy updates to the parameter vector and show that its performance is competitive with reasonable strategies which have the benefit of hindsight. We demonstrate the effectiveness of our algorithm in the online portfolio selection domain where a trader has to pay proportional transaction costs every time his portfolio is updated. Our Online Lazy Updates (OLU) algorithm takes into account the transaction costs while computing an optimal portfolio which results in sparse updates to the portfolio vector. We successfully establish the robustness and scalability of our lazy portfolio selection algorithm with extensive theoretical and experimental results on two real-world datasets.
Online L1-Dictionary Learning with Application to Novel Document Detection
Kasiviswanathan, Shiva P., Wang, Huahua, Banerjee, Arindam, Melville, Prem
Given their pervasive use, social media, such as Twitter, have become a leading source of breaking news. A key task in the automated identification of such news is the detection of novel documents from a voluminous stream of text documents in a scalable manner. Motivated by this challenge, we introduce the problem of online L1-dictionary learning where unlike traditional dictionary learning, which uses squared loss, the L1-penalty is used for measuring the reconstruction error. We present an efficient online algorithm for this problem based on alternating directions method of multipliers, and establish a sublinear regret bound for this algorithm. Empirical results on news-stream and Twitter data, shows that this online L1-dictionary learning algorithm for novel document detection gives more than an order of magnitude speedup over the previously known batch algorithm, without any significant loss in quality of results. Our algorithm for online L1-dictionary learning could be of independent interest.
A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation
Hsieh, Cho-jui, Banerjee, Arindam, Dhillon, Inderjit S., Ravikumar, Pradeep K.
In this paper, we consider the $\ell_1$ regularized sparse inverse covariance matrix estimation problem with a very large number of variables. Even in the face of this high dimensionality, and with limited number of samples, recent work has shown this estimator to have strong statistical guarantees in recovering the true structure of the sparse inverse covariance matrix, or alternatively the underlying graph structure of the corresponding Gaussian Markov Random Field. Our proposed algorithm divides the problem into smaller sub-problems, and uses the solutions of the sub-problems to build a good approximation for the original problem. We derive a bound on the distance of the approximate solution to the true solution. Based on this bound, we propose a clustering algorithm that attempts to minimize this bound, and in practice, is able to find effective partitions of the variables. We further use the approximate solution, i.e., solution resulting from solving the sub-problems, as an initial point to solve the original problem, and achieve a much faster computational procedure. As an example, a recent state-of-the-art method, QUIC requires 10 hours to solve a problem (with 10,000 nodes) that arises from a climate application, while our proposed algorithm, Divide and Conquer QUIC (DC-QUIC) only requires one hour to solve the problem.
Online Alternating Direction Method
Wang, Huahua, Banerjee, Arindam
Online optimization has emerged as powerful tool in large scale optimization. In this paper, we introduce efficient online algorithms based on the alternating directions method (ADM). We introduce a new proof technique for ADM in the batch setting, which yields the O(1/T) convergence rate of ADM and forms the basis of regret analysis in the online setting. We consider two scenarios in the online setting, based on whether the solution needs to lie in the feasible set or not. In both settings, we establish regret bounds for both the objective function as well as constraint violation for general and strongly convex functions. Preliminary results are presented to illustrate the performance of the proposed algorithms.
Gaussian Process Topic Models
Agovic, Amrudin, Banerjee, Arindam
We introduce Gaussian Process Topic Models (GPTMs), a new family of topic models which can leverage a kernel among documents while extracting correlated topics. GPTMs can be considered a systematic generalization of the Correlated Topic Models (CTMs) using ideas from Gaussian Process (GP) based embedding. Since GPTMs work with both a topic covariance matrix and a document kernel matrix, learning GPTMs involves a novel component-solving a suitable Sylvester equation capturing both topic and document dependencies. The efficacy of GPTMs is demonstrated with experiments evaluating the quality of both topic modeling and embedding.