Not enough data to create a plot.
Try a different view from the menu above.
Banerjee, Anjishnu
A Novel Algorithm for Personalized Federated Learning: Knowledge Distillation with Weighted Combination Loss
Hu, Hengrui, Kothari, Anai N., Banerjee, Anjishnu
Federated learning (FL) offers a privacy-preserving framework for distributed machine learning, enabling collaborative model training across diverse clients without centralizing sensitive data. However, statistical heterogeneity, characterized by non-independent and identically distributed (non-IID) client data, poses significant challenges, leading to model drift and poor generalization. This paper proposes a novel algorithm, pFedKD-WCL (Personalized Federated Knowledge Distillation with Weighted Combination Loss), which integrates knowledge distillation with bi-level optimization to address non-IID challenges. pFedKD-WCL leverages the current global model as a teacher to guide local models, optimizing both global convergence and local personalization efficiently. We evaluate pFedKD-WCL on the MNIST dataset and a synthetic dataset with non-IID partitioning, using multinomial logistic regression and multilayer perceptron models. Experimental results demonstrate that pFedKD-WCL outperforms state-of-the-art algorithms, including FedAvg, FedProx, Per-FedAvg, and pFedMe, in terms of accuracy and convergence speed.