Goto

Collaborating Authors

 Balsubramani, Akshay


Optimal Binary Autoencoding with Pairwise Correlations

arXiv.org Machine Learning

We formulate learning of a binary autoencoder as a biconvex optimization problem which learns from the pairwise correlations between encoded and decoded bits. Among all possible algorithms that use this information, ours finds the autoencoder that reconstructs its inputs with worst-case optimal loss. The optimal decoder is a single layer of artificial neurons, emerging entirely from the minimax loss minimization, and with weights learned by convex optimization. All this is reflected in competitive experimental results, demonstrating that binary autoencoding can be done efficiently by conveying information in pairwise correlations in an optimal fashion.


Muffled Semi-Supervised Learning

arXiv.org Machine Learning

We explore a novel approach to semi-supervised learning. This approach is contrary to the common approach in that the unlabeled examples serve to "muffle," rather than enhance, the guidance provided by the labeled examples. We provide several variants of the basic algorithm and show experimentally that they can achieve significantly higher AUC than boosted trees, random forests and logistic regression when unlabeled examples are available.


Sequential Nonparametric Testing with the Law of the Iterated Logarithm

arXiv.org Machine Learning

We propose a new algorithmic framework for sequential hypothesis testing with i.i.d. data, which includes A/B testing, nonparametric two-sample testing, and independence testing as special cases. It is novel in several ways: (a) it takes linear time and constant space to compute on the fly, (b) it has the same power guarantee as a non-sequential version of the test with the same computational constraints up to a small factor, and (c) it accesses only as many samples as are required - its stopping time adapts to the unknown difficulty of the problem. All our test statistics are constructed to be zero-mean martingales under the null hypothesis, and the rejection threshold is governed by a uniform non-asymptotic law of the iterated logarithm (LIL). For the case of nonparametric two-sample mean testing, we also provide a finite sample power analysis, and the first non-asymptotic stopping time calculations for this class of problems. We verify our predictions for type I and II errors and stopping times using simulations.


Scalable Semi-Supervised Aggregation of Classifiers

Neural Information Processing Systems

We present and empirically evaluate an efficient algorithm that learns to aggregate the predictions of an ensemble of binary classifiers. The algorithm uses the structure of the ensemble predictions on unlabeled data to yield significant performance improvements. It does this without making assumptions on the structure or origin of the ensemble, without parameters, and as scalably as linear learning. We empirically demonstrate these performance gains with random forests.


Sharp Finite-Time Iterated-Logarithm Martingale Concentration

arXiv.org Machine Learning

We give concentration bounds for martingales that are uniform over finite times and extend classical Hoeffding and Bernstein inequalities. We also demonstrate our concentration bounds to be optimal with a matching anti-concentration inequality, proved using the same method. Together these constitute a finite-time version of the law of the iterated logarithm, and shed light on the relationship between it and the central limit theorem.


PAC-Bayes Iterated Logarithm Bounds for Martingale Mixtures

arXiv.org Machine Learning

We give tight concentration bounds for mixtures of martingales that are simultaneously uniform over (a) mixture distributions, in a PAC-Bayes sense; and (b) all finite times. These bounds are proved in terms of the martingale variance, extending classical Bernstein inequalities, and sharpening and simplifying prior work.


Optimally Combining Classifiers Using Unlabeled Data

arXiv.org Machine Learning

We develop a worst-case analysis of aggregation of classifier ensembles for binary classification. The task of predicting to minimize error is formulated as a game played over a given set of unlabeled data (a transductive setting), where prior label information is encoded as constraints on the game. The minimax solution of this game identifies cases where a weighted combination of the classifiers can perform significantly better than any single classifier.


PAC-Bayes with Minimax for Confidence-Rated Transduction

arXiv.org Machine Learning

We consider using an ensemble of binary classifiers for transductive prediction, when unlabeled test data are known in advance. We derive minimax optimal rules for confidence-rated prediction in this setting. By using PAC-Bayes analysis on these rules, we obtain data-dependent performance guarantees without distributional assumptions on the data. Our analysis techniques are readily extended to a setting in which the predictor is allowed to abstain.


The Fast Convergence of Incremental PCA

arXiv.org Machine Learning

We consider a situation in which we see samples in $\mathbb{R}^d$ drawn i.i.d. from some distribution with mean zero and unknown covariance A. We wish to compute the top eigenvector of A in an incremental fashion - with an algorithm that maintains an estimate of the top eigenvector in O(d) space, and incrementally adjusts the estimate with each new data point that arrives. Two classical such schemes are due to Krasulina (1969) and Oja (1983). We give finite-sample convergence rates for both.


The Fast Convergence of Incremental PCA

Neural Information Processing Systems

We prove the first finite-sample convergence rates for any incremental PCA algorithm using sub-quadratic time and memory per iteration. The algorithm analyzed is Oja's learning rule, an efficient and well-known scheme for estimating the top principal component. Our analysis of this non-convex problem yields expected and high-probability convergence rates of $\tilde{O}(1/n)$ through a novel technique. We relate our guarantees to existing rates for stochastic gradient descent on strongly convex functions, and extend those results. We also include experiments which demonstrate convergence behaviors predicted by our analysis.