Goto

Collaborating Authors

 Balestriero, Randall


Semi-Supervised Learning via New Deep Network Inversion

arXiv.org Machine Learning

We exploit a recently derived inversion scheme for arbitrary deep neural networks to develop a new semi-supervised learning framework that applies to a wide range of systems and problems. The approach outperforms current state-of-the-art methods on MNIST reaching $99.14\%$ of test set accuracy while using $5$ labeled examples per class. Experiments with one-dimensional signals highlight the generality of the method. Importantly, our approach is simple, efficient, and requires no change in the deep network architecture.


Deep Neural Networks

arXiv.org Machine Learning

Deep Neural Networks (DNNs) are universal function approximators providing state-of- the-art solutions on wide range of applications. Common perceptual tasks such as speech recognition, image classification, and object tracking are now commonly tackled via DNNs. Some fundamental problems remain: (1) the lack of a mathematical framework providing an explicit and interpretable input-output formula for any topology, (2) quantification of DNNs stability regarding adversarial examples (i.e. modified inputs fooling DNN predictions whilst undetectable to humans), (3) absence of generalization guarantees and controllable behaviors for ambiguous patterns, (4) leverage unlabeled data to apply DNNs to domains where expert labeling is scarce as in the medical field. Answering those points would provide theoretical perspectives for further developments based on a common ground. Furthermore, DNNs are now deployed in tremendous societal applications, pushing the need to fill this theoretical gap to ensure control, reliability, and interpretability.


Linear Time Complexity Deep Fourier Scattering Network and Extension to Nonlinear Invariants

arXiv.org Machine Learning

In this paper we propose a scalable version of a state-of-the-art deterministic time-invariant feature extraction approach based on consecutive changes of basis and nonlinearities, namely, the scattering network. The first focus of the paper is to extend the scattering network to allow the use of higher order nonlinearities as well as extracting nonlinear and Fourier based statistics leading to the required invariants of any inherently structured input. In order to reach fast convolutions and to leverage the intrinsic structure of wavelets, we derive our complete model in the Fourier domain. In addition of providing fast computations, we are now able to exploit sparse matrices due to extremely high sparsity well localized in the Fourier domain. As a result, we are able to reach a true linear time complexity with inputs in the Fourier domain allowing fast and energy efficient solutions to machine learning tasks. Validation of the features and computational results will be presented through the use of these invariant coefficients to perform classification on audio recordings of bird songs captured in multiple different soundscapes. In the end, the applicability of the presented solutions to deep artificial neural networks is discussed.


Multiscale Residual Mixture of PCA: Dynamic Dictionaries for Optimal Basis Learning

arXiv.org Machine Learning

In this paper we are interested in the problem of learning an over-complete basis and a methodology such that the reconstruction or inverse problem does not need optimization. We analyze the optimality of the presented approaches, their link to popular already known techniques s.a. Artificial Neural Networks,k-means or Oja's learning rule. Finally, we will see that one approach to reach the optimal dictionary is a factorial and hierarchical approach. The derived approach lead to a formulation of a Deep Oja Network. We present results on different tasks and present the resulting very efficient learning algorithm which brings a new vision on the training of deep nets. Finally, the theoretical work shows that deep frameworks are one way to efficiently have over-complete (combinatorially large) dictionary yet allowing easy reconstruction. We thus present the Deep Residual Oja Network (DRON). We demonstrate that a recursive deep approach working on the residuals allow exponential decrease of the error w.r.t. the depth.


Neural Decision Trees

arXiv.org Machine Learning

In this paper we propose a synergistic melting of neural networks and decision trees (DT) we call neural decision trees (NDT). NDT is an architecture a la decision tree where each splitting node is an independent multilayer perceptron allowing oblique decision functions or arbritrary nonlinear decision function if more than one layer is used. This way, each MLP can be seen as a node of the tree. We then show that with the weight sharing asumption among those units, we end up with a Hashing Neural Network (HNN) which is a multilayer perceptron with sigmoid activation function for the last layer as opposed to the standard softmax. The output units then jointly represent the probability to be in a particular region. The proposed framework allows for global optimization as opposed to greedy in DT and differentiability w.r.t. all parameters and the input, allowing easy integration in any learnable pipeline, for example after CNNs for computer vision tasks. We also demonstrate the modeling power of HNN allowing to learn union of disjoint regions for final clustering or classification making it more general and powerful than standard softmax MLP requiring linear separability thus reducing the need on the inner layer to perform complex data transformations. We finally show experiments for supervised, semi-suppervised and unsupervised tasks and compare results with standard DTs and MLPs.