Balcan, Maria-Florina
Learning Revenue Maximizing Menus of Lotteries and Two-Part Tariffs
Balcan, Maria-Florina, Beyhaghi, Hedyeh
We advance a recently flourishing line of work at the intersection of learning theory and computational economics by studying the learnability of two classes of mechanisms prominent in economics, namely menus of lotteries and two-part tariffs. The former is a family of randomized mechanisms designed for selling multiple items, known to achieve revenue beyond deterministic mechanisms, while the latter is designed for selling multiple units (copies) of a single item with applications in real-world scenarios such as car or bike-sharing services. We focus on learning high-revenue mechanisms of this form from buyer valuation data in both distributional settings, where we have access to buyers' valuation samples up-front, and the more challenging and less-studied online settings, where buyers arrive one-at-a-time and no distributional assumption is made about their values. Our main contribution is proposing the first online learning algorithms for menus of lotteries and two-part tariffs with strong regret-bound guarantees. In the general case, we provide a reduction to a finite number of experts, and in the limited buyer type case, we show a reduction to online linear optimization, which allows us to obtain no-regret guarantees by presenting buyers with menus that correspond to a barycentric spanner. In addition, we provide algorithms with improved running times over prior work for the distributional settings. The key difficulty when deriving learning algorithms for these settings is that the relevant revenue functions have sharp transition boundaries. In stark contrast with the recent literature on learning such unstructured functions, we show that simple discretization-based techniques are sufficient for learning in these settings.
Generalization Guarantees for Multi-item Profit Maximization: Pricing, Auctions, and Randomized Mechanisms
Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen
We study multi-item profit maximization when there is an underlying distribution over buyers' values. In practice, a full description of the distribution is typically unavailable, so we study the setting where the mechanism designer only has samples from the distribution. If the designer uses the samples to optimize over a complex mechanism class -- such as the set of all multi-item, multi-buyer mechanisms -- a mechanism may have high average profit over the samples but low expected profit. This raises the central question of this paper: how many samples are sufficient to ensure that a mechanism's average profit is close to its expected profit? To answer this question, we uncover structure shared by many pricing, auction, and lottery mechanisms: for any set of buyers' values, profit is piecewise linear in the mechanism's parameters. Using this structure, we prove new bounds for mechanism classes not yet studied in the sample-based mechanism design literature and match or improve over the best-known guarantees for many classes.
Label Propagation with Weak Supervision
Pukdee, Rattana, Sam, Dylan, Balcan, Maria-Florina, Ravikumar, Pradeep
Semi-supervised learning and weakly supervised learning are important paradigms that aim to reduce the growing demand for labeled data in current machine learning applications. In this paper, we introduce a novel analysis of the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that moreover takes advantage of useful prior information, specifically probabilistic hypothesized labels on the unlabeled data. We provide an error bound that exploits both the local geometric properties of the underlying graph and the quality of the prior information. We also propose a framework to incorporate multiple sources of noisy information. In particular, we consider the setting of weak supervision, where our sources of information are weak labelers. We demonstrate the ability of our approach on multiple benchmark weakly supervised classification tasks, showing improvements upon existing semi-supervised and weakly supervised methods. High-dimensional machine learning models require large labeled datasets for good performance and generalization. In the paradigm of semi-supervised learning, we look to overcome the bottleneck of labeled data by leveraging large amounts of unlabeled data and assumptions on how the target predictor behaves over the unlabeled samples. In this work, we focus on the classical semi-supervised approach of label propagation (LPA) (Zhu & Ghahramani, 2002; Zhou et al., 2003).
Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games
Balcan, Maria-Florina, Pukdee, Rattana, Ravikumar, Pradeep, Zhang, Hongyang
Adversarial training is a standard technique for training adversarially robust models. In this paper, we study adversarial training as an alternating best-response strategy in a 2-player zero-sum game. We prove that even in a simple scenario of a linear classifier and a statistical model that abstracts robust vs. non-robust features, the alternating best response strategy of such game may not converge. On the other hand, a unique pure Nash equilibrium of the game exists and is provably robust. We support our theoretical results with experiments, showing the non-convergence of adversarial training and the robustness of Nash equilibrium.
Improved Learning Bounds for Branch-and-Cut
Balcan, Maria-Florina, Prasad, Siddharth, Sandholm, Tuomas, Vitercik, Ellen
Branch-and-cut is the most widely used algorithm for solving integer programs, employed by commercial solvers like CPLEX and Gurobi. Branch-and-cut has a wide variety of tunable parameters that have a huge impact on the size of the search tree that it builds, but are challenging to tune by hand. An increasingly popular approach is to use machine learning to tune these parameters: using a training set of integer programs from the application domain at hand, the goal is to find a configuration with strong predicted performance on future, unseen integer programs from the same domain. If the training set is too small, a configuration may have good performance over the training set but poor performance on future integer programs. In this paper, we prove sample complexity guarantees for this procedure, which bound how large the training set should be to ensure that for any configuration, its average performance over the training set is close to its expected future performance. Our guarantees apply to parameters that control the most important aspects of branch-and-cut: node selection, branching constraint selection, and cutting plane selection, and are sharper and more general than those found in prior research.
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
Khodak, Mikhail, Tu, Renbo, Li, Tian, Li, Liam, Balcan, Maria-Florina, Smith, Virginia, Talwalkar, Ameet
Tuning hyperparameters is a crucial but arduous part of the machine learning pipeline. Hyperparameter optimization is even more challenging in federated learning, where models are learned over a distributed network of heterogeneous devices; here, the need to keep data on device and perform local training makes it difficult to efficiently train and evaluate configurations. In this work, we investigate the problem of federated hyperparameter tuning. We first identify key challenges and show how standard approaches may be adapted to form baselines for the federated setting. Then, by making a novel connection to the neural architecture search technique of weight-sharing, we introduce a new method, FedEx, to accelerate federated hyperparameter tuning that is applicable to widely-used federated optimization methods such as FedAvg and recent variants. Theoretically, we show that a FedEx variant correctly tunes the on-device learning rate in the setting of online convex optimization across devices. Empirically, we show that FedEx can outperform natural baselines for federated hyperparameter tuning by several percentage points on the Shakespeare, FEMNIST, and CIFAR-10 benchmarks--obtaining higher accuracy using the same training budget.
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
Balcan, Maria-Florina, Prasad, Siddharth, Sandholm, Tuomas, Vitercik, Ellen
Cutting-plane methods have enabled remarkable successes in integer programming over the last few decades. State-of-the-art solvers integrate a myriad of cutting-plane techniques to speed up the underlying tree-search algorithm used to find optimal solutions. In this paper we prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution at hand using samples. We first bound the sample complexity of learning cutting planes from the canonical family of Chv\'atal-Gomory cuts. Our bounds handle any number of waves of any number of cuts and are fine tuned to the magnitudes of the constraint coefficients. Next, we prove sample complexity bounds for more sophisticated cut selection policies that use a combination of scoring rules to choose from a family of cuts. Finally, beyond the realm of cutting planes for integer programming, we develop a general abstraction of tree search that captures key components such as node selection and variable selection. For this abstraction, we bound the sample complexity of learning a good policy for building the search tree.
Data driven algorithms for limited labeled data learning
Balcan, Maria-Florina, Sharma, Dravyansh
We consider a novel data driven approach for designing learning algorithms that can effectively learn with only a small number of labeled examples. This is crucial for modern machine learning applications where labels are scarce or expensive to obtain. We focus on graph-based techniques, where the unlabeled examples are connected in a graph under the implicit assumption that similar nodes likely have similar labels. Over the past decades, several elegant graph-based semi-supervised and active learning algorithms for how to infer the labels of the unlabeled examples given the graph and a few labeled examples have been proposed. However, the problem of how to create the graph (which impacts the practical usefulness of these methods significantly) has been relegated to domain-specific art and heuristics and no general principles have been proposed. In this work we present a novel data driven approach for learning the graph and provide strong formal guarantees in both the distributional and online learning formalizations. We show how to leverage problem instances coming from an underlying problem domain to learn the graph hyperparameters from commonly used parametric families of graphs that perform well on new instances coming from the same domain. We obtain low regret and efficient algorithms in the online setting, and generalization guarantees in the distributional setting. We also show how to combine several very different similarity metrics and learn multiple hyperparameters, providing general techniques to apply to large classes of problems. We expect some of the tools and techniques we develop along the way to be of interest beyond semi-supervised and active learning, for data driven algorithms for combinatorial problems more generally.
Generalization in portfolio-based algorithm selection
Balcan, Maria-Florina, Sandholm, Tuomas, Vitercik, Ellen
Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem instance, using an algorithm selector to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes, both the portfolio and the algorithm selector are chosen using a training set of typical problem instances from the application domain at hand. In this paper, we provide the first provable guarantees for portfolio-based algorithm selection. We analyze how large the training set should be to ensure that the resulting algorithm selector's average performance over the training set is close to its future (expected) performance. This involves analyzing three key reasons why these two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm's performance as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the portfolio construction and algorithm selection together. We prove that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector. With experiments, we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we can hope to include a well-suited parameter setting for every possible problem instance, but it becomes impossible to avoid overfitting.
Scalable and Provably Accurate Algorithms for Differentially Private Distributed Decision Tree Learning
Wang, Kaiwen, Dick, Travis, Balcan, Maria-Florina
This paper introduces the first provably accurate algorithms for differentially private, top-down decision tree learning in the distributed setting (Balcan et al., 2012). We propose DP-TopDown, a general privacy preserving decision tree learning algorithm, and present two distributed implementations. Our first method NoisyCounts naturally extends the single machine algorithm by using the Laplace mechanism. Our second method LocalRNM significantly reduces communication and added noise by performing local optimization at each data holder. We provide the first utility guarantees for differentially private top-down decision tree learning in both the single machine and distributed settings. These guarantees show that the error of the privately-learned decision tree quickly goes to zero provided that the dataset is sufficiently large. Our extensive experiments on real datasets illustrate the trade-offs of privacy, accuracy and generalization when learning private decision trees in the distributed setting.