Goto

Collaborating Authors

 Balasubramanian, Vineeth N


MASON: A Model AgnoStic ObjectNess Framework

arXiv.org Artificial Intelligence

This paper proposes a simple, yet very effective method to localize dominant foreground objects in an image, to pixel-level precision. The proposed method 'MASON' (Model-AgnoStic ObjectNess) uses a deep convolutional network to generate category-independent and model-agnostic heat maps for any image. The network is not explicitly trained for the task, and hence, can be used off-the-shelf in tandem with any other network or task. We show that this framework scales to a wide variety of images, and illustrate the effectiveness of MASON in three varied application contexts.


Fast Dawid-Skene

arXiv.org Machine Learning

Many real world problems can now be effectively solved using supervised machine learning. A major roadblock is often the lack of an adequate quantity of labeled data for training. A possible solution is to assign the task of labeling data to a crowd, and then infer the true label using aggregation methods. A well-known approach for aggregation is the Dawid-Skene (DS) algorithm, which is based on the principle of Expectation-Maximization (EM). We propose a new simple, yet effective, EM-based algorithm, which can be interpreted as a 'hard' version of DS, that allows much faster convergence while maintaining similar accuracy in aggregation. We also show how the proposed method can be extended to settings when there are multiple labels as well as for online vote aggregation. Our experiments on standard vote aggregation datasets show a significant speedup in time taken for convergence - upto $\sim$8x over Dawid-Skene and $\sim$6x over other fast EM methods, at competitive accuracy performance.


ADINE: An Adaptive Momentum Method for Stochastic Gradient Descent

arXiv.org Machine Learning

Two major momentum-based techniques that have achieved tremendous success in optimization are Polyak's heavy ball method and Nesterov's accelerated gradient. A crucial step in all momentum-based methods is the choice of the momentum parameter $m$ which is always suggested to be set to less than $1$. Although the choice of $m < 1$ is justified only under very strong theoretical assumptions, it works well in practice even when the assumptions do not necessarily hold. In this paper, we propose a new momentum based method $\textit{ADINE}$, which relaxes the constraint of $m < 1$ and allows the learning algorithm to use adaptive higher momentum. We motivate our hypothesis on $m$ by experimentally verifying that a higher momentum ($\ge 1$) can help escape saddles much faster. Using this motivation, we propose our method $\textit{ADINE}$ that helps weigh the previous updates more (by setting the momentum parameter $> 1$), evaluate our proposed algorithm on deep neural networks and show that $\textit{ADINE}$ helps the learning algorithm to converge much faster without compromising on the generalization error.


STWalk: Learning Trajectory Representations in Temporal Graphs

arXiv.org Machine Learning

Analyzing the temporal behavior of nodes in time-varying graphs is useful for many applications such as targeted advertising, community evolution and outlier detection. In this paper, we present a novel approach, STWalk, for learning trajectory representations of nodes in temporal graphs. The proposed framework makes use of structural properties of graphs at current and previous time-steps to learn effective node trajectory representations. STWalk performs random walks on a graph at a given time step (called space-walk) as well as on graphs from past time-steps (called time-walk) to capture the spatio-temporal behavior of nodes. We propose two variants of STWalk to learn trajectory representations. In one algorithm, we perform space-walk and time-walk as part of a single step. In the other variant, we perform space-walk and time-walk separately and combine the learned representations to get the final trajectory embedding. Extensive experiments on three real-world temporal graph datasets validate the effectiveness of the learned representations when compared to three baseline methods. We also show the goodness of the learned trajectory embeddings for change point detection, as well as demonstrate that arithmetic operations on these trajectory representations yield interesting and interpretable results.


Are Saddles Good Enough for Deep Learning?

arXiv.org Machine Learning

Recent years have seen a growing interest in understanding deep neural networks from an optimization perspective. It is understood now that converging to low-cost local minima is sufficient for such models to become effective in practice. However, in this work, we propose a new hypothesis based on recent theoretical findings and empirical studies that deep neural network models actually converge to saddle points with high degeneracy. Our findings from this work are new, and can have a significant impact on the development of gradient descent based methods for training deep networks. We validated our hypotheses using an extensive experimental evaluation on standard datasets such as MNIST and CIFAR-10, and also showed that recent efforts that attempt to escape saddles finally converge to saddles with high degeneracy, which we define as `good saddles'. We also verified the famous Wigner's Semicircle Law in our experimental results.