Not enough data to create a plot.
Try a different view from the menu above.
Balaprakash, Prasanna
Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search
Jiang, Shengli, Qin, Shiyi, Van Lehn, Reid C., Balaprakash, Prasanna, Zavala, Victor M.
Graph Neural Networks (GNNs) have emerged as a prominent class of data-driven methods for molecular property prediction. However, a key limitation of typical GNN models is their inability to quantify uncertainties in the predictions. This capability is crucial for ensuring the trustworthy use and deployment of models in downstream tasks. To that end, we introduce AutoGNNUQ, an automated uncertainty quantification (UQ) approach for molecular property prediction. AutoGNNUQ leverages architecture search to generate an ensemble of high-performing GNNs, enabling the estimation of predictive uncertainties. Our approach employs variance decomposition to separate data (aleatoric) and model (epistemic) uncertainties, providing valuable insights for reducing them. In our computational experiments, we demonstrate that AutoGNNUQ outperforms existing UQ methods in terms of both prediction accuracy and UQ performance on multiple benchmark datasets. Additionally, we utilize t-SNE visualization to explore correlations between molecular features and uncertainty, offering insight for dataset improvement. AutoGNNUQ has broad applicability in domains such as drug discovery and materials science, where accurate uncertainty quantification is crucial for decision-making.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
Godoy, William F., Valero-Lara, Pedro, Teranishi, Keita, Balaprakash, Prasanna, Vetter, Jeffrey S.
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple
Learning Continually on a Sequence of Graphs -- The Dynamical System Way
Raghavan, Krishnan, Balaprakash, Prasanna
Continual learning~(CL) is a field concerned with learning a series of inter-related task with the tasks typically defined in the sense of either regression or classification. In recent years, CL has been studied extensively when these tasks are defined using Euclidean data -- data, such as images, that can be described by a set of vectors in an n-dimensional real space. However, the literature is quite sparse, when the data corresponding to a CL task is nonEuclidean -- data , such as graphs, point clouds or manifold, where the notion of similarity in the sense of Euclidean metric does not hold. For instance, a graph is described by a tuple of vertices and edges and similarities between two graphs is not well defined through a Euclidean metric. Due to this fundamental nature of the data, developing CL for nonEuclidean data presents several theoretical and methodological challenges. In particular, CL for graphs requires explicit modelling of nonstationary behavior of vertices and edges and their effects on the learning problem. Therefore, in this work, we develop a adaptive dynamic programming viewpoint for CL with graphs. In this work, we formulate a two-player sequential game between the act of learning new tasks~(generalization) and remembering previously learned tasks~(forgetting). We prove mathematically the existence of a solution to the game and demonstrate convergence to the solution of the game. Finally, we demonstrate the efficacy of our method on a number of graph benchmarks with a comprehensive ablation study while establishing state-of-the-art performance.
Application of probabilistic modeling and automated machine learning framework for high-dimensional stress field
Luan, Lele, Ramachandra, Nesar, Ravi, Sandipp Krishnan, Bhaduri, Anindya, Pandita, Piyush, Balaprakash, Prasanna, Anitescu, Mihai, Sun, Changjie, Wang, Liping
Modern computational methods, involving highly sophisticated mathematical formulations, enable several tasks like modeling complex physical phenomenon, predicting key properties and design optimization. The higher fidelity in these computer models makes it computationally intensive to query them hundreds of times for optimization and one usually relies on a simplified model albeit at the cost of losing predictive accuracy and precision. Towards this, data-driven surrogate modeling methods have shown a lot of promise in emulating the behavior of the expensive computer models. However, a major bottleneck in such methods is the inability to deal with high input dimensionality and the need for relatively large datasets. With such problems, the input and output quantity of interest are tensors of high dimensionality. Commonly used surrogate modeling methods for such problems, suffer from requirements like high number of computational evaluations that precludes one from performing other numerical tasks like uncertainty quantification and statistical analysis. In this work, we propose an end-to-end approach that maps a high-dimensional image like input to an output of high dimensionality or its key statistics. Our approach uses two main framework that perform three steps: a) reduce the input and output from a high-dimensional space to a reduced or low-dimensional space, b) model the input-output relationship in the low-dimensional space, and c) enable the incorporation of domain-specific physical constraints as masks. In order to accomplish the task of reducing input dimensionality we leverage principal component analysis, that is coupled with two surrogate modeling methods namely: a) Bayesian hybrid modeling, and b) DeepHyper's deep neural networks. We demonstrate the applicability of the approach on a problem of a linear elastic stress field data.
ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales
Wu, Xingfu, Balaprakash, Prasanna, Kruse, Michael, Koo, Jaehoon, Videau, Brice, Hovland, Paul, Taylor, Valerie, Geltz, Brad, Jana, Siddhartha, Hall, Mary
As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications -- XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP improvement on up to 4,096 nodes.
Quantifying uncertainty for deep learning based forecasting and flow-reconstruction using neural architecture search ensembles
Maulik, Romit, Egele, Romain, Raghavan, Krishnan, Balaprakash, Prasanna
Classical problems in computational physics such as data-driven forecasting and signal reconstruction from sparse sensors have recently seen an explosion in deep neural network (DNN) based algorithmic approaches. However, most DNN models do not provide uncertainty estimates, which are crucial for establishing the trustworthiness of these techniques in downstream decision making tasks and scenarios. In recent years, ensemble-based methods have achieved significant success for the uncertainty quantification in DNNs on a number of benchmark problems. However, their performance on real-world applications remains under-explored. In this work, we present an automated approach to DNN discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification. Specifically, we propose the use of a scalable neural and hyperparameter architecture search for discovering an ensemble of DNN models for complex dynamical systems. We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly. This is achieved by using genetic algorithms and Bayesian optimization for sampling the search space of neural network architectures and hyperparameters. Subsequently, a model selection approach is used to identify candidate models for an ensemble set construction. Afterwards, a variance decomposition approach is used to estimate the uncertainty of the predictions from the ensemble. We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature. We demonstrate superior performance from the ensemble in contrast with individual high-performing models and other benchmarks.
Analyzing the impact of climate change on critical infrastructure from the scientific literature: A weakly supervised NLP approach
Mallick, Tanwi, Bergerson, Joshua David, Verner, Duane R., Hutchison, John K, Levy, Leslie-Anne, Balaprakash, Prasanna
Natural language processing (NLP) is a promising approach for analyzing large volumes of climate-change and infrastructure-related scientific literature. However, best-in-practice NLP techniques require large collections of relevant documents (corpus). Furthermore, NLP techniques using machine learning and deep learning techniques require labels grouping the articles based on user-defined criteria for a significant subset of a corpus in order to train the supervised model. Even labeling a few hundred documents with human subject-matter experts is a time-consuming process. To expedite this process, we developed a weak supervision-based NLP approach that leverages semantic similarity between categories and documents to (i) establish a topic-specific corpus by subsetting a large-scale open-access corpus and (ii) generate category labels for the topic-specific corpus. In comparison with a months-long process of subject-matter expert labeling, we assign category labels to the whole corpus using weak supervision and supervised learning in about 13 hours. The labeled climate and NCF corpus enable targeted, efficient identification of documents discussing a topic (or combination of topics) of interest and identification of various effects of climate change on critical infrastructure, improving the usability of scientific literature and ultimately supporting enhanced policy and decision making. To demonstrate this capability, we conduct topic modeling on pairs of climate hazards and NCFs to discover trending topics at the intersection of these categories. This method is useful for analysts and decision-makers to quickly grasp the relevant topics and most important documents linked to the topic.
Stabilized Neural Ordinary Differential Equations for Long-Time Forecasting of Dynamical Systems
Linot, Alec J., Burby, Joshua W., Tang, Qi, Balaprakash, Prasanna, Graham, Michael D., Maulik, Romit
In data-driven modeling of spatiotemporal phenomena careful consideration often needs to be made in capturing the dynamics of the high wavenumbers. This problem becomes especially challenging when the system of interest exhibits shocks or chaotic dynamics. We present a data-driven modeling method that accurately captures shocks and chaotic dynamics by proposing a novel architecture, stabilized neural ordinary differential equation (ODE). In our proposed architecture, we learn the right-hand-side (RHS) of an ODE by adding the outputs of two NN together where one learns a linear term and the other a nonlinear term. Specifically, we implement this by training a sparse linear convolutional NN to learn the linear term and a dense fully-connected nonlinear NN to learn the nonlinear term. This is in contrast with the standard neural ODE which involves training only a single NN for learning the RHS. We apply this setup to the viscous Burgers equation, which exhibits shocked behavior, and show better short-time tracking and prediction of the energy spectrum at high wavenumbers than a standard neural ODE. We also find that the stabilized neural ODE models are much more robust to noisy initial conditions than the standard neural ODE approach. We also apply this method to chaotic trajectories of the Kuramoto-Sivashinsky equation. In this case, stabilized neural ODEs keep long-time trajectories on the attractor, and are highly robust to noisy initial conditions, while standard neural ODEs fail at achieving either of these results. We conclude by demonstrating how stabilizing neural ODEs provide a natural extension for use in reduced-order modeling by projecting the dynamics onto the eigenvectors of the learned linear term.
A data-centric weak supervised learning for highway traffic incident detection
Sun, Yixuan, Mallick, Tanwi, Balaprakash, Prasanna, Macfarlane, Jane
Using the data from loop detector sensors for near-real-time detection of traffic incidents in highways is crucial to averting major traffic congestion. While recent supervised machine learning methods offer solutions to incident detection by leveraging human-labeled incident data, the false alarm rate is often too high to be used in practice. Specifically, the inconsistency in the human labeling of the incidents significantly affects the performance of supervised learning models. To that end, we focus on a data-centric approach to improve the accuracy and reduce the false alarm rate of traffic incident detection on highways. We develop a weak supervised learning workflow to generate high-quality training labels for the incident data without the ground truth labels, and we use those generated labels in the supervised learning setup for final detection. This approach comprises three stages. First, we introduce a data preprocessing and curation pipeline that processes traffic sensor data to generate high-quality training data through leveraging labeling functions, which can be domain knowledge-related or simple heuristic rules. Second, we evaluate the training data generated by weak supervision using three supervised learning models -- random forest, k-nearest neighbors, and a support vector machine ensemble -- and long short-term memory classifiers. The results show that the accuracy of all of the models improves significantly after using the training data generated by weak supervision. Third, we develop an online real-time incident detection approach that leverages the model ensemble and the uncertainty quantification while detecting incidents. Overall, we show that our proposed weak supervised learning workflow achieves a high incident detection rate (0.90) and low false alarm rate (0.08).
Sequential Bayesian Neural Subnetwork Ensembles
Jantre, Sanket, Madireddy, Sandeep, Bhattacharya, Shrijita, Maiti, Tapabrata, Balaprakash, Prasanna
Deep neural network ensembles that appeal to model diversity have been used successfully to improve predictive performance and model robustness in several applications. Whereas, it has recently been shown that sparse subnetworks of dense models can match the performance of their dense counterparts and increase their robustness while effectively decreasing the model complexity. However, most ensembling techniques require multiple parallel and costly evaluations and have been proposed primarily with deterministic models, whereas sparsity induction has been mostly done through ad-hoc pruning. We propose sequential ensembling of dynamic Bayesian neural subnetworks that systematically reduce model complexity through sparsity-inducing priors and generate diverse ensembles in a single forward pass of the model. The ensembling strategy consists of an exploration phase that finds high-performing regions of the parameter space and multiple exploitation phases that effectively exploit the compactness of the sparse model to quickly converge to different minima in the energy landscape corresponding to high-performing subnetworks yielding diverse ensembles. We empirically demonstrate that our proposed approach surpasses the baselines of the dense frequentist and Bayesian ensemble models in prediction accuracy, uncertainty estimation, and out-of-distribution (OoD) robustness on CIFAR10, CIFAR100 datasets, and their out-of-distribution variants: CIFAR10-C, CIFAR100-C induced by corruptions. Furthermore, we found that our approach produced the most diverse ensembles compared to the approaches with a single forward pass and even compared to the approaches with multiple forward passes in some cases.