Bajaj, Chandrajit
Learning Transferable 3D Adversarial Cloaks for Deep Trained Detectors
Maesumi, Arman, Zhu, Mingkang, Wang, Yi, Chen, Tianlong, Wang, Zhangyang, Bajaj, Chandrajit
This paper presents a novel patch-based adversarial attack pipeline that trains adversarial patches on 3D human meshes. We sample triangular faces on a reference human mesh, and create an adversarial texture atlas over those faces. The adversarial texture is transferred to human meshes in various poses, which are rendered onto a collection of real-world background images. Contrary to the traditional patch-based adversarial attacks, where prior work attempts to fool trained object detectors using appended adversarial patches, this new form of attack is mapped into the 3D object world and back-propagated to the texture atlas through differentiable rendering. As such, the adversarial patch is trained under deformation consistent with real-world materials. In addition, and unlike existing adversarial patches, our new 3D adversarial patch is shown to fool state-of-the-art deep object detectors robustly under varying views, potentially leading to an attacking scheme that is persistently strong in the physical world.
Can 3D Adversarial Logos Cloak Humans?
Chen, Tianlong, Wang, Yi, Zhou, Jingyang, Liu, Sijia, Chang, Shiyu, Bajaj, Chandrajit, Wang, Zhangyang
With the trend of adversarial attacks, researchers attempt to fool trained object detectors in 2D scenes. Among many of them, an intriguing new form of attack with potential real-world usage is to append adversarial patches (e.g. logos) to images. Nevertheless, much less have we known about adversarial attacks from 3D rendering views, which is essential for the attack to be persistently strong in the physical world. This paper presents a new 3D adversarial logo attack: we construct an arbitrary shape logo from a 2D texture image and map this image into a 3D adversarial logo via a texture mapping called logo transformation. The resulting 3D adversarial logo is then viewed as an adversarial texture enabling easy manipulation of its shape and position. This greatly extends the versatility of adversarial training for computer graphics synthesized imagery. Contrary to the traditional adversarial patch, this new form of attack is mapped into the 3D object world and back-propagates to the 2D image domain through differentiable rendering. In addition, and unlike existing adversarial patches, our new 3D adversarial logo is shown to fool state-of-the-art deep object detectors robustly under model rotations, leading to one step further for realistic attacks in the physical world. Our codes are available at https://github.com/TAMU-VITA/3D_Adversarial_Logo.
Stein Variational Gradient Descent With Matrix-Valued Kernels
Wang, Dilin, Tang, Ziyang, Bajaj, Chandrajit, Liu, Qiang
Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and Fisher information matrix, to incorporate geometric information into SVGD updates. We achieve this by presenting a generalization of SVGD that replaces the scalar-valued kernels in vanilla SVGD with more general matrix-valued kernels. This yields a significant extension of SVGD, and more importantly, allows us to flexibly incorporate various preconditioning matrices to accelerate the exploration in the probability landscape. Empirical results show that our method outperforms vanilla SVGD and a variety of baseline approaches over a range of real-world Bayesian inference tasks.
Translation Synchronization via Truncated Least Squares
Huang, Xiangru, Liang, Zhenxiao, Bajaj, Chandrajit, Huang, Qixing
In this paper, we introduce a robust algorithm, \textsl{TranSync}, for the 1D translation synchronization problem, in which the aim is to recover the global coordinates of a set of nodes from noisy measurements of relative coordinates along an observation graph. The basic idea of TranSync is to apply truncated least squares, where the solution at each step is used to gradually prune out noisy measurements. We analyze TranSync under both deterministic and randomized noisy models, demonstrating its robustness and stability. Experimental results on synthetic and real datasets show that TranSync is superior to state-of-the-art convex formulations in terms of both efficiency and accuracy.