Backes, Michael
When Machine Unlearning Jeopardizes Privacy
Chen, Min, Zhang, Zhikun, Wang, Tianhao, Backes, Michael, Humbert, Mathias, Zhang, Yang
The right to be forgotten states that a data owner has the right to erase her data from an entity storing it. In the context of machine learning (ML), the right to be forgotten requires an ML model owner to remove the data owner's data from the training set used to build the ML model, a process known as machine unlearning. While originally designed to protect the privacy of the data owner, we argue that machine unlearning may leave some imprint of the data in the ML model and thus create unintended privacy risks. In this paper, we perform the first study on investigating the unintended information leakage caused by machine unlearning. We propose a novel membership inference attack which leverages the different outputs of an ML model's two versions to infer whether the deleted sample is part of the training set. Our experiments over five different datasets demonstrate that the proposed membership inference attack achieves strong performance. More importantly, we show that our attack in multiple cases outperforms the classical membership inference attack on the original ML model, which indicates that machine unlearning can have counterproductive effects on privacy. We notice that the privacy degradation is especially significant for well-generalized ML models where classical membership inference does not perform well. We further investigate two mechanisms to mitigate the newly discovered privacy risks and show that the only effective mechanism is to release the predicted label only. We believe that our results can help improve privacy in practical implementation of machine unlearning.
Adversarial Vulnerability Bounds for Gaussian Process Classification
Smith, Michael Thomas, Grosse, Kathrin, Backes, Michael, Alvarez, Mauricio A
Machine learning (ML) classification is increasingly used in safety-critical systems. Protecting ML classifiers from adversarial examples is crucial. We propose that the main threat is that of an attacker perturbing a confidently classified input to produce a confident misclassification. To protect against this we devise an adversarial bound (AB) for a Gaussian process classifier, that holds for the entire input domain, bounding the potential for any future adversarial method to cause such misclassification. This is a formal guarantee of robustness, not just an empirically derived result. We investigate how to configure the classifier to maximise the bound, including the use of a sparse approximation, leading to the method producing a practical, useful and provably robust classifier, which we test using a variety of datasets.
Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning
Salem, Ahmed, Bhattacharya, Apratim, Backes, Michael, Fritz, Mario, Zhang, Yang
Machine learning (ML) has progressed rapidly during the past decade and the major factor that drives such development is the unprecedented large-scale data. As data generation is a continuous process, this leads to ML service providers updating their models frequently with newly-collected data in an online learning scenario. In consequence, if an ML model is queried with the same set of data samples at two different points in time, it will provide different results. In this paper, we investigate whether the change in the output of a black-box ML model before and after being updated can leak information of the dataset used to perform the update. This constitutes a new attack surface against black-box ML models and such information leakage severely damages the intellectual property and data privacy of the ML model owner/provider. In contrast to membership inference attacks, we use an encoder-decoder formulation that allows inferring diverse information ranging from detailed characteristics to full reconstruction of the dataset. Our new attacks are facilitated by state-of-the-art deep learning techniques. In particular, we propose a hybrid generative model (BM-GAN) that is based on generative adversarial networks (GANs) but includes a reconstructive loss that allows generating accurate samples. Our experiments show effective prediction of dataset characteristics and even full reconstruction in challenging conditions.
Towards Automated Network Mitigation Analysis (extended)
Speicher, Patrick, Steinmetz, Marcel, Hoffmann, Jörg, Backes, Michael, Künnemann, Robert
Penetration testing is a well-established practical concept for the identification of potentially exploitable security weaknesses and an important component of a security audit. Providing a holistic security assessment for networks consisting of several hundreds hosts is hardly feasible though without some sort of mechanization. Mitigation, prioritizing counter-measures subject to a given budget, currently lacks a solid theoretical understanding and is hence more art than science. In this work, we propose the first approach for conducting comprehensive what-if analyses in order to reason about mitigation in a conceptually well-founded manner. To evaluate and compare mitigation strategies, we use simulated penetration testing, i.e., automated attack-finding, based on a network model to which a subset of a given set of mitigation actions, e.g., changes to the network topology, system updates, configuration changes etc. is applied. Using Stackelberg planning, we determine optimal combinations that minimize the maximal attacker success (similar to a Stackelberg game), and thus provide a well-founded basis for a holistic mitigation strategy. We show that these Stackelberg planning models can largely be derived from network scan, public vulnerability databases and manual inspection with various degrees of automation and detail, and we simulate mitigation analysis on networks of different size and vulnerability.
MLCapsule: Guarded Offline Deployment of Machine Learning as a Service
Hanzlik, Lucjan, Zhang, Yang, Grosse, Kathrin, Salem, Ahmed, Augustin, Max, Backes, Michael, Fritz, Mario
With the widespread use of machine learning (ML) techniques, ML as a service has become increasingly popular. In this setting, an ML model resides on a server and users can query the model with their data via an API. However, if the user's input is sensitive, sending it to the server is not an option. Equally, the service provider does not want to share the model by sending it to the client for protecting its intellectual property and pay-per-query business model. In this paper, we propose MLCapsule, a guarded offline deployment of machine learning as a service. MLCapsule executes the machine learning model locally on the user's client and therefore the data never leaves the client. Meanwhile, MLCapsule offers the service provider the same level of control and security of its model as the commonly used server-side execution. In addition, MLCapsule is applicable to offline applications that require local execution. Beyond protecting against direct model access, we demonstrate that MLCapsule allows for implementing defenses against advanced attacks on machine learning models such as model stealing/reverse engineering and membership inference.
Killing Three Birds with one Gaussian Process: Analyzing Attack Vectors on Classification
Grosse, Kathrin, Smith, Michael T., Backes, Michael
The wide usage of Machine Learning (ML) has lead to research on the attack vectors and vulnerability of these systems. The defenses in this area are however still an open problem, and often lead to an arms race. We define a naive, secure classifier at test time and show that a Gaussian Process (GP) is an instance of this classifier given two assumptions: one concerns the distances in the training data, the other rejection at test time. Using these assumptions, we are able to show that a classifier is either secure, or generalizes and thus learns. Our analysis also points towards another factor influencing robustness, the curvature of the classifier. This connection is not unknown for linear models, but GP offer an ideal framework to study this relationship for nonlinear classifiers. We evaluate on five security and two computer vision datasets applying test and training time attacks and membership inference. We show that we only change which attacks are needed to succeed, instead of alleviating the threat. Only for membership inference, there is a setting in which attacks are unsuccessful (<10% increase in accuracy over random guess). Given these results, we define a classification scheme based on voting, ParGP. This allows us to decide how many points vote and how large the agreement on a class has to be. This ensures a classification output only in cases when there is evidence for a decision, where evidence is parametrized. We evaluate this scheme and obtain promising results.
ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models
Salem, Ahmed, Zhang, Yang, Humbert, Mathias, Fritz, Mario, Backes, Michael
Machine learning (ML) has become a core component of many real-world applications and training data is a key factor that drives current progress. This huge success has led Internet companies to deploy machine learning as a service (MLaaS). Recently, the first membership inference attack has shown that extraction of information on the training set is possible in such MLaaS settings, which has severe security and privacy implications. However, the early demonstrations of the feasibility of such attacks have many assumptions on the adversary such as using multiple so-called shadow models, knowledge of the target model structure and having a dataset from the same distribution as the target model's training data. We relax all 3 key assumptions, thereby showing that such attacks are very broadly applicable at low cost and thereby pose a more severe risk than previously thought. We present the most comprehensive study so far on this emerging and developing threat using eight diverse datasets which show the viability of the proposed attacks across domains. In addition, we propose the first effective defense mechanisms against such broader class of membership inference attacks that maintain a high level of utility of the ML model.
How Wrong Am I? - Studying Adversarial Examples and their Impact on Uncertainty in Gaussian Process Machine Learning Models
Grosse, Kathrin, Pfaff, David, Smith, Michael Thomas, Backes, Michael
Machine learning models are vulnerable to Adversarial Examples: minor perturbations to input samples intended to deliberately cause misclassification. Current defenses against adversarial examples, especially for Deep Neural Networks (DNN), are primarily derived from empirical developments, and their security guarantees are often only justified retroactively. Many defenses therefore rely on hidden assumptions that are subsequently subverted by increasingly elaborate attacks. This is not surprising: deep learning notoriously lacks a comprehensive mathematical framework to provide meaningful guarantees. In this paper, we leverage Gaussian Processes to investigate adversarial examples in the framework of Bayesian inference. Across different models and datasets, we find deviating levels of uncertainty reflect the perturbation introduced to benign samples by state-of-the-art attacks, including novel white-box attacks on Gaussian Processes. Our experiments demonstrate that even unoptimized uncertainty thresholds already reject adversarial examples in many scenarios.
Stackelberg Planning: Towards Effective Leader-Follower State Space Search
Speicher, Patrick (CISPA, Saarland University) | Steinmetz, Marcel (CISPA, Saarland University) | Backes, Michael (CISPA, Saarland University) | Hoffmann, Jörg (CISPA, Saarland University) | Künnemann, Robert (CISPA, Saarland University)
Inspired by work on Stackelberg security games, we introduce Stackelberg planning, where a leader player in a classical planning task chooses a minimum-cost action sequence aimed at maximizing the plan cost of a follower player in the same task. Such Stackelberg planning can provide useful analyses not only in planning-based security applications like network penetration testing, but also to measure robustness against perturbances in more traditional planning applications (e. g. with a leader sabotaging road network connections in transportation-type domains). To identify all equilibria---exhibiting the leader’s own-cost-vs.-follower-cost trade-off---we design leader-follower search, a state space search at the leader level which calls in each state an optimal planner at the follower level. We devise simple heuristic guidance, branch-and-bound style pruning, and partial-order reduction techniques for this setting. We run experiments on Stackelberg variants of IPC and pentesting benchmarks. In several domains, Stackelberg planning is quite feasible in practice.
On the (Statistical) Detection of Adversarial Examples
Grosse, Kathrin, Manoharan, Praveen, Papernot, Nicolas, Backes, Michael, McDaniel, Patrick
Machine Learning (ML) models are applied in a variety of tasks such as network intrusion detection or Malware classification. Yet, these models are vulnerable to a class of malicious inputs known as adversarial examples. These are slightly perturbed inputs that are classified incorrectly by the ML model. The mitigation of these adversarial inputs remains an open problem. As a step towards understanding adversarial examples, we show that they are not drawn from the same distribution than the original data, and can thus be detected using statistical tests. Using thus knowledge, we introduce a complimentary approach to identify specific inputs that are adversarial. Specifically, we augment our ML model with an additional output, in which the model is trained to classify all adversarial inputs. We evaluate our approach on multiple adversarial example crafting methods (including the fast gradient sign and saliency map methods) with several datasets. The statistical test flags sample sets containing adversarial inputs confidently at sample sizes between 10 and 100 data points. Furthermore, our augmented model either detects adversarial examples as outliers with high accuracy (> 80%) or increases the adversary's cost - the perturbation added - by more than 150%. In this way, we show that statistical properties of adversarial examples are essential to their detection.