Goto

Collaborating Authors

 Azencot, Omri


Sample and Predict Your Latent: Modality-free Sequential Disentanglement via Contrastive Estimation

arXiv.org Artificial Intelligence

Unsupervised disentanglement is a long-standing challenge in representation learning. Recently, self-supervised techniques achieved impressive results in the sequential setting, where data is time-dependent. However, the latter methods employ modality-based data augmentations and random sampling or solve auxiliary tasks. In this work, we propose to avoid that by generating, sampling, and comparing empirical distributions from the underlying variational model. Unlike existing work, we introduce a self-supervised sequential disentanglement framework based on contrastive estimation with no external signals, while using common batch sizes and samples from the latent space itself. In practice, we propose a unified, efficient, and easy-to-code sampling strategy for semantically similar and dissimilar views of the data. We evaluate our approach on video, audio, and time series benchmarks. Our method presents state-of-the-art results in comparison to existing techniques. The code is available at https://github.com/azencot-group/SPYL.


Multifactor Sequential Disentanglement via Structured Koopman Autoencoders

arXiv.org Artificial Intelligence

Disentangling complex data to its latent factors of variation is a fundamental task in representation learning. Existing work on sequential disentanglement mostly provides two factor representations, i.e., it separates the data to time-varying and time-invariant factors. In contrast, we consider multifactor disentanglement in which multiple (more than two) semantic disentangled components are generated. Key to our approach is a strong inductive bias where we assume that the underlying dynamics can be represented linearly in the latent space. Under this assumption, it becomes natural to exploit the recently introduced Koopman autoencoder models. However, disentangled representations are not guaranteed in Koopman approaches, and thus we propose a novel spectral loss term which leads to structured Koopman matrices and disentanglement. Overall, we propose a simple and easy to code new deep model that is fully unsupervised and it supports multifactor disentanglement. We showcase new disentangling abilities such as swapping of individual static factors between characters, and an incremental swap of disentangled factors from the source to the target. Moreover, we evaluate our method extensively on two factor standard benchmark tasks where we significantly improve over competing unsupervised approaches, and we perform competitively in comparison to weakly- and self-supervised state-of-the-art approaches. The code is available at https://github.com/azencot-group/SKD.


An Operator Theoretic Approach for Analyzing Sequence Neural Networks

arXiv.org Artificial Intelligence

Analyzing the inner mechanisms of deep neural networks is a fundamental task in machine learning. Existing work provides limited analysis or it depends on local theories, such as fixed-point analysis. In contrast, we propose to analyze trained neural networks using an operator theoretic approach which is rooted in Koopman theory, the Koopman Analysis of Neural Networks (KANN). Key to our method is the Koopman operator, which is a linear object that globally represents the dominant behavior of the network dynamics. The linearity of the Koopman operator facilitates analysis via its eigenvectors and eigenvalues. Our method reveals that the latter eigendecomposition holds semantic information related to the neural network inner workings. For instance, the eigenvectors highlight positive and negative n-grams in the sentiments analysis task; similarly, the eigenvectors capture the salient features of healthy heart beat signals in the ECG classification problem.


Eigenvalue initialisation and regularisation for Koopman autoencoders

arXiv.org Artificial Intelligence

Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.


Lipschitz Recurrent Neural Networks

arXiv.org Machine Learning

Viewing recurrent neural networks (RNNs) as continuous-time dynamical systems, we propose a recurrent unit that describes the hidden state's evolution with two parts: a well-understood linear component plus a Lipschitz nonlinearity. This particular functional form facilitates stability analysis of the long-term behavior of the recurrent unit using tools from nonlinear systems theory. In turn, this enables architectural design decisions before experimentation. Sufficient conditions for global stability of the recurrent unit are obtained, motivating a novel scheme for constructing hidden-to-hidden matrices. Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks, including computer vision, language modeling and speech prediction tasks. Finally, through Hessian-based analysis we demonstrate that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.