Goto

Collaborating Authors

 Awasthi, Pranjal


On some provably correct cases of variational inference for topic models

arXiv.org Machine Learning

Variational inference is a very efficient and popular heuristic used in various forms in the context of latent variable models. It's closely related to Expectation Maximization (EM), and is applied when exact EM is computationally infeasible. Despite being immensely popular, current theoretical understanding of the effectiveness of variaitonal inference based algorithms is very limited. In this work we provide the first analysis of instances where variational inference algorithms converge to the global optimum, in the setting of topic models. More specifically, we show that variational inference provably learns the optimal parameters of a topic model under natural assumptions on the topic-word matrix and the topic priors. The properties that the topic word matrix must satisfy in our setting are related to the topic expansion assumption introduced in (Anandkumar et al., 2013), as well as the anchor words assumption in (Arora et al., 2012c). The assumptions on the topic priors are related to the well known Dirichlet prior, introduced to the area of topic modeling by (Blei et al., 2003). It is well known that initialization plays a crucial role in how well variational based algorithms perform in practice. The initializations that we use are fairly natural. One of them is similar to what is currently used in LDA-c, the most popular implementation of variational inference for topic models. The other one is an overlapping clustering algorithm, inspired by a work by (Arora et al., 2014) on dictionary learning, which is very simple and efficient. While our primary goal is to provide insights into when variational inference might work in practice, the multiplicative, rather than the additive nature of the variational inference updates forces us to use fairly non-standard proof arguments, which we believe will be of general interest.


Relax, no need to round: integrality of clustering formulations

arXiv.org Machine Learning

We study exact recovery conditions for convex relaxations of point cloud clustering problems, focusing on two of the most common optimization problems for unsupervised clustering: $k$-means and $k$-median clustering. Motivations for focusing on convex relaxations are: (a) they come with a certificate of optimality, and (b) they are generic tools which are relatively parameter-free, not tailored to specific assumptions over the input. More precisely, we consider the distributional setting where there are $k$ clusters in $\mathbb{R}^m$ and data from each cluster consists of $n$ points sampled from a symmetric distribution within a ball of unit radius. We ask: what is the minimal separation distance between cluster centers needed for convex relaxations to exactly recover these $k$ clusters as the optimal integral solution? For the $k$-median linear programming relaxation we show a tight bound: exact recovery is obtained given arbitrarily small pairwise separation $\epsilon > 0$ between the balls. In other words, the pairwise center separation is $\Delta > 2+\epsilon$. Under the same distributional model, the $k$-means LP relaxation fails to recover such clusters at separation as large as $\Delta = 4$. Yet, if we enforce PSD constraints on the $k$-means LP, we get exact cluster recovery at center separation $\Delta > 2\sqrt2(1+\sqrt{1/m})$. In contrast, common heuristics such as Lloyd's algorithm (a.k.a. the $k$-means algorithm) can fail to recover clusters in this setting; even with arbitrarily large cluster separation, k-means++ with overseeding by any constant factor fails with high probability at exact cluster recovery. To complement the theoretical analysis, we provide an experimental study of the recovery guarantees for these various methods, and discuss several open problems which these experiments suggest.


Learning Mixtures of Ranking Models

Neural Information Processing Systems

This work concerns learning probabilistic models for ranking data in a heterogeneous population.The specific problem we study is learning the parameters of a Mallows Mixture Model. Despite being widely studied, current heuristics for this problem do not have theoretical guarantees and can get stuck in bad local optima. We present the first polynomial time algorithm which provably learns the parameters ofa mixture of two Mallows models. A key component of our algorithm is a novel use of tensor decomposition techniques to learn the top-k prefix in both the rankings. Before this work, even the question of identifiability in the case of a mixture of two Mallows models was unresolved.


Supervised Clustering

Neural Information Processing Systems

Despite the ubiquity of clustering as a tool in unsupervised learning, there is not yet a consensus on a formal theory, and the vast majority of work in this direction has focused on unsupervised clustering. We study a recently proposed framework for supervised clustering where there is access to a teacher. We give an improved generic algorithm to cluster any concept class in that model. Our algorithm is query-efficient in the sense that it involves only a small amount of interaction with the teacher. We also present and study two natural generalizations of the model. The model assumes that the teacher response to the algorithm is perfect. We eliminate this limitation by proposing a noisy model and give an algorithm for clustering the class of intervals in this noisy model. We also propose a dynamic model where the teacher sees a random subset of the points. Finally, for datasets satisfying a spectrum of weak to strong properties, we give query bounds, and show that a class of clustering functions containing Single-Linkage will find the target clustering under the strongest property.