Awais, Muhammad
Towards an Adversarially Robust Normalization Approach
Awais, Muhammad, Shamshad, Fahad, Bae, Sung-Ho
Batch Normalization (BatchNorm) is effective for improving the performance and accelerating the training of deep neural networks. However, it has also shown to be a cause of adversarial vulnerability, i.e., networks without it are more robust to adversarial attacks. In this paper, we investigate how BatchNorm causes this vulnerability and proposed new normalization that is robust to adversarial attacks. We first observe that adversarial images tend to shift the distribution of BatchNorm input, and this shift makes train-time estimated population statistics inaccurate. We hypothesize that these inaccurate statistics make models with BatchNorm more vulnerable to adversarial attacks. We prove our hypothesis by replacing train-time estimated statistics with statistics calculated from the inference-time batch. We found that the adversarial vulnerability of BatchNorm disappears if we use these statistics. However, without estimated batch statistics, we can not use BatchNorm in the practice if large batches of input are not available. To mitigate this, we propose Robust Normalization (RobustNorm); an adversarially robust version of BatchNorm. We experimentally show that models trained with RobustNorm perform better in adversarial settings while retaining all the benefits of BatchNorm. Code is available at \url{https://github.com/awaisrauf/RobustNorm}.
Leveraging Deep Stein's Unbiased Risk Estimator for Unsupervised X-ray Denoising
Shamshad, Fahad, Awais, Muhammad, Asim, Muhammad, Lodhi, Zain ul Aabidin, Umair, Muhammad, Ahmed, Ali
Among the plethora of techniques devised to curb the prevalence of noise in medical images, deep learning based approaches have shown the most promise. However, one critical limitation of these deep learning based denoisers is the requirement of high-quality noiseless ground truth images that are difficult to obtain in many medical imaging applications such as X-rays. To circumvent this issue, we leverage recently proposed approach of [7] that incorporates Stein's Unbiased Risk Estimator (SURE) to train a deep convolutional neural network without requiring denoised ground truth X-ray data. Our experimental results demonstrate the effectiveness of SURE based approach for denoising X-ray images.