Plotting

 Avrim Blum


Collaborative PAC Learning

Neural Information Processing Systems

We consider a collaborative PAC learning model, in which k players attempt to learn the same underlying concept. We ask how much more information is required to learn an accurate classifier for all players simultaneously. We refer to the ratio between the sample complexity of collaborative PAC learning and its non-collaborative (single-player) counterpart as the overhead.


On preserving non-discrimination when combining expert advice

Neural Information Processing Systems

We study the interplay between sequential decision making and avoiding discrimination against protected groups, when examples arrive online and do not follow distributional assumptions. We consider the most basic extension of classical online learning: Given a class of predictors that are individually non-discriminatory with respect to a particular metric, how can we combine them to perform as well as the best predictor, while preserving non-discrimination? Surprisingly we show that this task is unachievable for the prevalent notion of equalized odds that requires equal false negative rates and equal false positive rates across groups. On the positive side, for another notion of non-discrimination, equalized error rates, we show that running separate instances of the classical multiplicative weights algorithm for each group achieves this guarantee. Interestingly, even for this notion, we show that algorithms with stronger performance guarantees than multiplicative weights cannot preserve non-discrimination.



Collaborative PAC Learning

Neural Information Processing Systems

We consider a collaborative PAC learning model, in which k players attempt to learn the same underlying concept. We ask how much more information is required to learn an accurate classifier for all players simultaneously. We refer to the ratio between the sample complexity of collaborative PAC learning and its non-collaborative (single-player) counterpart as the overhead.