Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Aryeh Kontorovich
Active Nearest-Neighbor Learning in Metric Spaces
Aryeh Kontorovich, Sivan Sabato, Ruth Urner
We propose a pool-based non-parametric active learning algorithm for general metric spaces, called MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend on the noisy-margin properties of the input sample, and are competitive with those obtained by previously proposed passive learners. We prove that the label complexity of MARMANN is significantly lower than that of any passive learner with similar error guarantees. Our algorithm is based on a generalized sample compression scheme and a new label-efficient active model-selection procedure.
Learning convex polytopes with margin
Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch
We present an improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about t log t halfspaces with margins in time polynomial in t (where t is the number of halfspaces forming an optimal polytope). We also identify distinct generalizations of the notion of margin from hyperplanes to polytopes and investigate how they relate geometrically; this result may be of interest beyond the learning setting.
Learning convex polytopes with margin
Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch
We present an improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about t log t halfspaces with margins in time polynomial in t (where t is the number of halfspaces forming an optimal polytope). We also identify distinct generalizations of the notion of margin from hyperplanes to polytopes and investigate how they relate geometrically; this result may be of interest beyond the learning setting.
Near-optimal sample compression for nearest neighbors
Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch
We present the first sample compression algorithm for nearest neighbors with nontrivial performance guarantees. We complement these guarantees by demonstrating almost matching hardness lower bounds, which show that our bound is nearly optimal. Our result yields new insight into margin-based nearest neighbor classification in metric spaces and allows us to significantly sharpen and simplify existing bounds. Some encouraging empirical results are also presented.