Arora, Sanjeev
Theoretical Analysis of Auto Rate-Tuning by Batch Normalization
Arora, Sanjeev, Li, Zhiyuan, Lyu, Kaifeng
Batch Normalization (BN) has become a cornerstone of deep learning across diverse architectures, appearing to help optimization as well as generalization. While the idea makes intuitive sense, theoretical analysis of its effectiveness has been lacking. Here theoretical support is provided for one of its conjectured properties, namely, the ability to allow gradient descent to succeed with less tuning of learning rates. It is shown that even if we fix the learning rate of scale-invariant parameters (e.g., weights of each layer with BN) to a constant (say, $0.3$), gradient descent still approaches a stationary point (i.e., a solution where gradient is zero) in the rate of $T^{-1/2}$ in $T$ iterations, asymptotically matching the best bound for gradient descent with well-tuned learning rates. A similar result with convergence rate $T^{-1/4}$ is also shown for stochastic gradient descent.
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Arora, Sanjeev, Cohen, Nadav, Golowich, Noah, Hu, Wei
We analyze speed of convergence to global optimum for gradient descent training a deep linear neural network (parameterized as $x \mapsto W_N W_{N-1} \cdots W_1 x$) by minimizing the $\ell_2$ loss over whitened data. Convergence at a linear rate is guaranteed when the following hold: (i) dimensions of hidden layers are at least the minimum of the input and output dimensions; (ii) weight matrices at initialization are approximately balanced; and (iii) the initial loss is smaller than the loss of any rank-deficient solution. The assumptions on initialization (conditions (ii) and (iii)) are necessary, in the sense that violating any one of them may lead to convergence failure. Moreover, in the important case of output dimension 1, i.e. scalar regression, they are met, and thus convergence to global optimum holds, with constant probability under a random initialization scheme. Our results significantly extend previous analyses, e.g., of deep linear residual networks (Bartlett et al., 2018).
A La Carte Embedding: Cheap but Effective Induction of Semantic Feature Vectors
Khodak, Mikhail, Saunshi, Nikunj, Liang, Yingyu, Ma, Tengyu, Stewart, Brandon, Arora, Sanjeev
Motivations like domain adaptation, transfer learning, and feature learning have fueled interest in inducing embeddings for rare or unseen words, n-grams, synsets, and other textual features. This paper introduces a la carte embedding, a simple and general alternative to the usual word2vec-based approaches for building such representations that is based upon recent theoretical results for GloVe-like embeddings. Our method relies mainly on a linear transformation that is efficiently learnable using pretrained word vectors and linear regression. This transform is applicable on the fly in the future when a new text feature or rare word is encountered, even if only a single usage example is available. We introduce a new dataset showing how the a la carte method requires fewer examples of words in context to learn high-quality embeddings and we obtain state-of-the-art results on a nonce task and some unsupervised document classification tasks.
Theoretical limitations of Encoder-Decoder GAN architectures
Arora, Sanjeev, Risteski, Andrej, Zhang, Yi
Encoder-decoder GANs architectures (e.g., BiGAN and ALI) seek to add an inference mechanism to the GANs setup, consisting of a small encoder deep net that maps data-points to their succinct encodings. The intuition is that being forced to train an encoder alongside the usual generator forces the system to learn meaningful mappings from the code to the data-point and vice-versa, which should improve the learning of the target distribution and ameliorate mode-collapse. It should also yield meaningful codes that are useful as features for downstream tasks. The current paper shows rigorously that even on real-life distributions of images, the encode-decoder GAN training objectives (a) cannot prevent mode collapse; i.e. the objective can be near-optimal even when the generated distribution has low and finite support (b) cannot prevent learning meaningless codes for data -- essentially white noise. Thus if encoder-decoder GANs do indeed work then it must be due to reasons as yet not understood, since the training objective can be low even for meaningless solutions.
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Arora, Sanjeev, Ge, Rong, Liang, Yingyu, Ma, Tengyu, Zhang, Yi
We show that training of generative adversarial network (GAN) may not have good generalization properties; e.g., training may appear successful but the trained distribution may be far from target distribution in standard metrics. However, generalization does occur for a weaker metric called neural net distance. It is also shown that an approximate pure equilibrium exists in the discriminator/generator game for a special class of generators with natural training objectives when generator capacity and training set sizes are moderate. This existence of equilibrium inspires MIX+GAN protocol, which can be combined with any existing GAN training, and empirically shown to improve some of them.
Provable benefits of representation learning
Arora, Sanjeev, Risteski, Andrej
There is general consensus that learning representations is useful for a variety of reasons, e.g. efficient use of labeled data (semi-supervised learning), transfer learning and understanding hidden structure of data. Popular techniques for representation learning include clustering, manifold learning, kernel-learning, autoencoders, Boltzmann machines, etc. To study the relative merits of these techniques, it's essential to formalize the definition and goals of representation learning, so that they are all become instances of the same definition. This paper introduces such a formal framework that also formalizes the utility of learning the representation. It is related to previous Bayesian notions, but with some new twists. We show the usefulness of our framework by exhibiting simple and natural settings -- linear mixture models and loglinear models, where the power of representation learning can be formally shown. In these examples, representation learning can be performed provably and efficiently under plausible assumptions (despite being NP-hard), and furthermore: (i) it greatly reduces the need for labeled data (semi-supervised learning) and (ii) it allows solving classification tasks when simpler approaches like nearest neighbors require too much data (iii) it is more powerful than manifold learning methods.
Provable learning of Noisy-or Networks
Arora, Sanjeev, Ge, Rong, Ma, Tengyu, Risteski, Andrej
Many machine learning applications use latent variable models to explain structure in data, whereby visible variables (= coordinates of the given datapoint) are explained as a probabilistic function of some hidden variables. Finding parameters with the maximum likelihood is NP-hard even in very simple settings. In recent years, provably efficient algorithms were nevertheless developed for models with linear structures: topic models, mixture models, hidden markov models, etc. These algorithms use matrix or tensor decomposition, and make some reasonable assumptions about the parameters of the underlying model. But matrix or tensor decomposition seems of little use when the latent variable model has nonlinearities. The current paper shows how to make progress: tensor decomposition is applied for learning the single-layer {\em noisy or} network, which is a textbook example of a Bayes net, and used for example in the classic QMR-DT software for diagnosing which disease(s) a patient may have by observing the symptoms he/she exhibits. The technical novelty here, which should be useful in other settings in future, is analysis of tensor decomposition in presence of systematic error (i.e., where the noise/error is correlated with the signal, and doesn't decrease as number of samples goes to infinity). This requires rethinking all steps of tensor decomposition methods from the ground up. For simplicity our analysis is stated assuming that the network parameters were chosen from a probability distribution but the method seems more generally applicable.
RAND-WALK: A Latent Variable Model Approach to Word Embeddings
Arora, Sanjeev, Li, Yuanzhi, Liang, Yingyu, Ma, Tengyu, Risteski, Andrej
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~\citet{mnih2007three}. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~\citet{mikolov2013efficient} and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
Linear Algebraic Structure of Word Senses, with Applications to Polysemy
Arora, Sanjeev, Li, Yuanzhi, Liang, Yingyu, Ma, Tengyu, Risteski, Andrej
Word embeddings are ubiquitous in NLP and information retrieval, but it's unclear what they represent when the word is polysemous, i.e., has multiple senses. Here it is shown that multiple word senses reside in linear superposition within the word embedding and can be recovered by simple sparse coding. The success of the method ---which applies to several embedding methods including word2vec--- is mathematically explained using the random walk on discourses model (Arora et al., 2016). A novel aspect of our technique is that each word sense is also accompanied by one of about 2000 discourse atoms that give a succinct description of which other words co-occur with that word sense. Discourse atoms seem of independent interest, and make the method potentially more useful than the traditional clustering-based approaches to polysemy.
Provable Algorithms for Inference in Topic Models
Arora, Sanjeev, Ge, Rong, Koehler, Frederic, Ma, Tengyu, Moitra, Ankur
Recently, there has been considerable progress on designing algorithms with provable guarantees -- typically using linear algebraic methods -- for parameter learning in latent variable models. But designing provable algorithms for inference has proven to be more challenging. Here we take a first step towards provable inference in topic models. We leverage a property of topic models that enables us to construct simple linear estimators for the unknown topic proportions that have small variance, and consequently can work with short documents. Our estimators also correspond to finding an estimate around which the posterior is well-concentrated. We show lower bounds that for shorter documents it can be information theoretically impossible to find the hidden topics. Finally, we give empirical results that demonstrate that our algorithm works on realistic topic models. It yields good solutions on synthetic data and runs in time comparable to a {\em single} iteration of Gibbs sampling.