Arora, Sanjeev
Language Models as Science Tutors
Chevalier, Alexis, Geng, Jiayi, Wettig, Alexander, Chen, Howard, Mizera, Sebastian, Annala, Toni, Aragon, Max Jameson, Fanlo, Arturo Rodríguez, Frieder, Simon, Machado, Simon, Prabhakar, Akshara, Thieu, Ellie, Wang, Jiachen T., Wang, Zirui, Wu, Xindi, Xia, Mengzhou, Jia, Wenhan, Yu, Jiatong, Zhu, Jun-Jie, Ren, Zhiyong Jason, Arora, Sanjeev, Chen, Danqi
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations.
LESS: Selecting Influential Data for Targeted Instruction Tuning
Xia, Mengzhou, Malladi, Sadhika, Gururangan, Suchin, Arora, Sanjeev, Chen, Danqi
Instruction tuning has unlocked powerful capabilities in large language models (LLMs), effectively using combined datasets to develop generalpurpose chatbots. However, real-world applications often require a specialized suite of skills (e.g., reasoning). The challenge lies in identifying the most relevant data from these extensive datasets to effectively develop specific capabilities, a setting we frame as targeted instruction tuning. We propose LESS, an optimizer-aware and practically efficient algorithm to effectively estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection. Crucially, LESS adapts existing influence formulations to work with the Adam optimizer and variable-length instruction data. LESS first constructs a highly reusable and transferable gradient datastore with low-dimensional gradient features and then selects examples based on their similarity to few-shot examples embodying a specific capability. Experiments show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks. Furthermore, the selected data is highly transferable: smaller models can be leveraged to select useful data for larger models and models from different families. Our qualitative analysis shows that our method goes beyond surface form cues to identify data that exemplifies the necessary reasoning skills for the intended downstream application.
Fine-Tuning Language Models with Just Forward Passes
Malladi, Sadhika, Gao, Tianyu, Nichani, Eshaan, Damian, Alex, Lee, Jason D., Chen, Danqi, Arora, Sanjeev
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12x memory reduction and up to 2x GPU-hour reduction in our implementation; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.
Unlearning via Sparse Representations
Shah, Vedant, Träuble, Frederik, Malik, Ashish, Larochelle, Hugo, Mozer, Michael, Arora, Sanjeev, Bengio, Yoshua, Goyal, Anirudh
Both methods, Unlearning via Activations and Unlearning via Examples, successfully demonstrated unlearning of the forget class while having a negligible effect on the models' performance on the retain set. Importantly, this is achieved without any form of training, retraining, or fine-tuning as is usually required by other methods. The retain set test accuracy remains more or less constant for all three datasets except for a few minor fluctuations. This is a result of the fact that due to localized and context-dependent sparse updates during the initial training of the model, discrete key-representations corresponding to different classes in the dataset are well separated from each other, an important prerequisite discussed in (Träuble et al., 2023). Hence, all the information about a class can be unlearned by forgetting only a subset of the forget class training data in the case of Unlearning via Examples, making it very data-efficient.
A Theory for Emergence of Complex Skills in Language Models
Arora, Sanjeev, Goyal, Anirudh
A major driver of AI products today is the fact that new skills emerge in language models when their parameter set and training corpora are scaled up. This phenomenon is poorly understood, and a mechanistic explanation via mathematical analysis of gradient-based training seems difficult. The current paper takes a different approach, analysing emergence using the famous (and empirical) Scaling Laws of LLMs and a simple statistical framework. Contributions include: (a) A statistical framework that relates cross-entropy loss of LLMs to competence on the basic skills that underlie language tasks. (b) Mathematical analysis showing that the Scaling Laws imply a strong form of inductive bias that allows the pre-trained model to learn very efficiently. We informally call this {\em slingshot generalization} since naively viewed it appears to give competence levels at skills that violate usual generalization theory. (c) A key example of slingshot generalization, that competence at executing tasks involving $k$-tuples of skills emerges essentially at the same scaling and same rate as competence on the elementary skills themselves.
Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models
Yu, Dingli, Kaur, Simran, Gupta, Arushi, Brown-Cohen, Jonah, Goyal, Anirudh, Arora, Sanjeev
With LLMs shifting their role from statistical modeling of language to serving as general-purpose AI agents, how should LLM evaluations change? Arguably, a key ability of an AI agent is to flexibly combine, as needed, the basic skills it has learned. The capability to combine skills plays an important role in (human) pedagogy and also in a paper on emergence phenomena (Arora & Goyal, 2023). This work introduces Skill-Mix, a new evaluation to measure ability to combine skills. Using a list of $N$ skills the evaluator repeatedly picks random subsets of $k$ skills and asks the LLM to produce text combining that subset of skills. Since the number of subsets grows like $N^k$, for even modest $k$ this evaluation will, with high probability, require the LLM to produce text significantly different from any text in the training set. The paper develops a methodology for (a) designing and administering such an evaluation, and (b) automatic grading (plus spot-checking by humans) of the results using GPT-4 as well as the open LLaMA-2 70B model. Administering a version of to popular chatbots gave results that, while generally in line with prior expectations, contained surprises. Sizeable differences exist among model capabilities that are not captured by their ranking on popular LLM leaderboards ("cramming for the leaderboard"). Furthermore, simple probability calculations indicate that GPT-4's reasonable performance on $k=5$ is suggestive of going beyond "stochastic parrot" behavior (Bender et al., 2021), i.e., it combines skills in ways that it had not seen during training. We sketch how the methodology can lead to a Skill-Mix based eco-system of open evaluations for AI capabilities of future models.
A Quadratic Synchronization Rule for Distributed Deep Learning
Gu, Xinran, Lyu, Kaifeng, Arora, Sanjeev, Zhang, Jingzhao, Huang, Longbo
In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for $H$ steps without synchronizing with others, hence reducing communication frequency. While $H$ has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper $H$ value can lead to generalization improvement. Yet, selecting a proper $H$ is elusive. This work proposes a theory-grounded method for determining $H$, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting $H$ in proportion to $\frac{1}{\eta^2}$ as the learning rate $\eta$ decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves $1.16\%$ or $0.84\%$ higher top-1 validation accuracy.
Do Transformers Parse while Predicting the Masked Word?
Zhao, Haoyu, Panigrahi, Abhishek, Ge, Rong, Arora, Sanjeev
Pre-trained language models have been shown to encode linguistic structures, e.g. dependency and constituency parse trees, in their embeddings while being trained on unsupervised loss functions like masked language modeling. Some doubts have been raised whether the models actually are doing parsing or only some computation weakly correlated with it. We study questions: (a) Is it possible to explicitly describe transformers with realistic embedding dimension, number of heads, etc. that are capable of doing parsing -- or even approximate parsing? (b) Why do pre-trained models capture parsing structure? This paper takes a step toward answering these questions in the context of generative modeling with PCFGs. We show that masked language models like BERT or RoBERTa of moderate sizes can approximately execute the Inside-Outside algorithm for the English PCFG [Marcus et al, 1993]. We also show that the Inside-Outside algorithm is optimal for masked language modeling loss on the PCFG-generated data. We also give a construction of transformers with $50$ layers, $15$ attention heads, and $1275$ dimensional embeddings in average such that using its embeddings it is possible to do constituency parsing with $>70\%$ F1 score on PTB dataset. We conduct probing experiments on models pre-trained on PCFG-generated data to show that this not only allows recovery of approximate parse tree, but also recovers marginal span probabilities computed by the Inside-Outside algorithm, which suggests an implicit bias of masked language modeling towards this algorithm.
Trainable Transformer in Transformer
Panigrahi, Abhishek, Malladi, Sadhika, Xia, Mengzhou, Arora, Sanjeev
Recent works attribute the capability of in-context learning (ICL) in large pre-trained language models to implicitly simulating and fine-tuning an internal model (e.g., linear or 2-layer MLP) during inference. However, such constructions require large memory overhead, which makes simulation of more sophisticated internal models intractable. In this work, we propose an efficient construction, Transformer in Transformer (in short, TinT), that allows a transformer to simulate and fine-tune complex models internally during inference (e.g., pre-trained language models). In particular, we introduce innovative approximation techniques that allow a TinT model with less than 2 billion parameters to simulate and fine-tune a 125 million parameter transformer model within a single forward pass. TinT accommodates many common transformer variants and its design ideas also improve the efficiency of past instantiations of simple models inside transformers. We conduct end-to-end experiments to validate the internal fine-tuning procedure of TinT on various language modeling and downstream tasks. For example, even with a limited one-step budget, we observe TinT for a OPT-125M model improves performance by 4-16% absolute on average compared to OPT-125M. These findings suggest that large pre-trained language models are capable of performing intricate subroutines. To facilitate further work, a modular and extensible codebase for TinT is included.
Task-Specific Skill Localization in Fine-tuned Language Models
Panigrahi, Abhishek, Saunshi, Nikunj, Zhao, Haoyu, Arora, Sanjeev
Pre-trained language models can be fine-tuned to solve diverse NLP tasks, including in few-shot settings. Thus fine-tuning allows the model to quickly pick up task-specific ``skills,'' but there has been limited study of where these newly-learnt skills reside inside the massive model. This paper introduces the term skill localization for this problem and proposes a solution. Given the downstream task and a model fine-tuned on that task, a simple optimization is used to identify a very small subset of parameters ($\sim0.01$% of model parameters) responsible for ($>95$%) of the model's performance, in the sense that grafting the fine-tuned values for just this tiny subset onto the pre-trained model gives performance almost as well as the fine-tuned model. While reminiscent of recent works on parameter-efficient fine-tuning, the novel aspects here are that: (i) No further re-training is needed on the subset (unlike, say, with lottery tickets). (ii) Notable improvements are seen over vanilla fine-tuning with respect to calibration of predictions in-distribution ($40$-$90$% error reduction) as well as the quality of predictions out-of-distribution (OOD). In models trained on multiple tasks, a stronger notion of skill localization is observed, where the sparse regions corresponding to different tasks are almost disjoint, and their overlap (when it happens) is a proxy for task similarity. Experiments suggest that localization via grafting can assist certain forms of continual learning.