Not enough data to create a plot.
Try a different view from the menu above.
Arora, Sanjeev
Simple, Efficient, and Neural Algorithms for Sparse Coding
Arora, Sanjeev, Ge, Rong, Ma, Tengyu, Moitra, Ankur
Sparse coding is a basic task in many fields including signal processing, neuroscience and machine learning where the goal is to learn a basis that enables a sparse representation of a given set of data, if one exists. Its standard formulation is as a non-convex optimization problem which is solved in practice by heuristics based on alternating minimization. Re- cent work has resulted in several algorithms for sparse coding with provable guarantees, but somewhat surprisingly these are outperformed by the simple alternating minimization heuristics. Here we give a general framework for understanding alternating minimization which we leverage to analyze existing heuristics and to design new ones also with provable guarantees. Some of these algorithms seem implementable on simple neural architectures, which was the original motivation of Olshausen and Field (1997a) in introducing sparse coding. We also give the first efficient algorithm for sparse coding that works almost up to the information theoretic limit for sparse recovery on incoherent dictionaries. All previous algorithms that approached or surpassed this limit run in time exponential in some natural parameter. Finally, our algorithms improve upon the sample complexity of existing approaches. We believe that our analysis framework will have applications in other settings where simple iterative algorithms are used.
New Algorithms for Learning Incoherent and Overcomplete Dictionaries
Arora, Sanjeev, Ge, Rong, Moitra, Ankur
In sparse recovery we are given a matrix $A$ (the dictionary) and a vector of the form $A X$ where $X$ is sparse, and the goal is to recover $X$. This is a central notion in signal processing, statistics and machine learning. But in applications such as sparse coding, edge detection, compression and super resolution, the dictionary $A$ is unknown and has to be learned from random examples of the form $Y = AX$ where $X$ is drawn from an appropriate distribution --- this is the dictionary learning problem. In most settings, $A$ is overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman, Wang and Wright who gave an algorithm for the full-rank case, which is rarely the case in applications. Our algorithm applies to incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo. In particular, a dictionary is $\mu$-incoherent if each pair of columns has inner product at most $\mu / \sqrt{n}$. The algorithm makes natural stochastic assumptions about the unknown sparse vector $X$, which can contain $k \leq c \min(\sqrt{n}/\mu \log n, m^{1/2 -\eta})$ non-zero entries (for any $\eta > 0$). This is close to the best $k$ allowable by the best sparse recovery algorithms even if one knows the dictionary $A$ exactly. Moreover, both the running time and sample complexity depend on $\log 1/\epsilon$, where $\epsilon$ is the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on $1/\epsilon$, and this is necessary.
Provable Bounds for Learning Some Deep Representations
Arora, Sanjeev, Bhaskara, Aditya, Ge, Rong, Ma, Tengyu
We give algorithms with provable guarantees that learn a class of deep nets in the generative model view popularized by Hinton and others. Our generative model is an $n$ node multilayer neural net that has degree at most $n^{\gamma}$ for some $\gamma <1$ and each edge has a random edge weight in $[-1,1]$. Our algorithm learns {\em almost all} networks in this class with polynomial running time. The sample complexity is quadratic or cubic depending upon the details of the model. The algorithm uses layerwise learning. It is based upon a novel idea of observing correlations among features and using these to infer the underlying edge structure via a global graph recovery procedure. The analysis of the algorithm reveals interesting structure of neural networks with random edge weights.
Provable ICA with Unknown Gaussian Noise, with Implications for Gaussian Mixtures and Autoencoders
Arora, Sanjeev, Ge, Rong, Moitra, Ankur, Sachdeva, Sushant
We present a new algorithm for Independent Component Analysis (ICA) which has provable performance guarantees. In particular, suppose we are given samples of the form $y = Ax + \eta$ where $A$ is an unknown $n \times n$ matrix and $x$ is chosen uniformly at random from $\{+1, -1\}^n$, $\eta$ is an $n$-dimensional Gaussian random variable with unknown covariance $\Sigma$: We give an algorithm that provable recovers $A$ and $\Sigma$ up to an additive $\epsilon$ whose running time and sample complexity are polynomial in $n$ and $1 / \epsilon$. To accomplish this, we introduce a novel ``quasi-whitening'' step that may be useful in other contexts in which the covariance of Gaussian noise is not known in advance. We also give a general framework for finding all local optima of a function (given an oracle for approximately finding just one) and this is a crucial step in our algorithm, one that has been overlooked in previous attempts, and allows us to control the accumulation of error when we find the columns of $A$ one by one via local search.
A Practical Algorithm for Topic Modeling with Provable Guarantees
Arora, Sanjeev, Ge, Rong, Halpern, Yoni, Mimno, David, Moitra, Ankur, Sontag, David, Wu, Yichen, Zhu, Michael
Topic models provide a useful method for dimensionality reduction and exploratory data analysis in large text corpora. Most approaches to topic model inference have been based on a maximum likelihood objective. Efficient algorithms exist that approximate this objective, but they have no provable guarantees. Recently, algorithms have been introduced that provide provable bounds, but these algorithms are not practical because they are inefficient and not robust to violations of model assumptions. In this paper we present an algorithm for topic model inference that is both provable and practical. The algorithm produces results comparable to the best MCMC implementations while running orders of magnitude faster.
A Note on the Representational Incompatibility of Function Approximation and Factored Dynamics
Allender, Eric, Arora, Sanjeev, Kearns, Michael, Moore, Cristopher, Russell, Alexander
We establish a new hardness result that shows that the difficulty of planning in factored Markov decision processes is representational rather than just computational. More precisely, we give a fixed family of factored MDPs with linear rewards whose optimal policies and value functions simply cannot be represented succinctly in any standard parametric form. Previous hardness results indicated that computing good policies from the MDP parameters was difficult, but left open the possibility of succinct function approximation for any fixed factored MDP. Our result applies even to policies which yield a polynomially poor approximation to the optimal value, and highlights interesting connections with the complexity class of Arthur-Merlin games.
A Note on the Representational Incompatibility of Function Approximation and Factored Dynamics
Allender, Eric, Arora, Sanjeev, Kearns, Michael, Moore, Cristopher, Russell, Alexander
We establish a new hardness result that shows that the difficulty of planning infactored Markov decision processes is representational rather than just computational. More precisely, we give a fixed family of factored MDPswith linear rewards whose optimal policies and value functions simply cannot be represented succinctly in any standard parametric form. Previous hardness results indicated that computing good policies from the MDP parameters was difficult, but left open the possibility of succinct function approximation for any fixed factored MDP. Our result applies even to policies which yield a polynomially poor approximation to the optimal value, and highlights interesting connections with the complexity classof Arthur-Merlin games.