Goto

Collaborating Authors

 Archambeau, Cedric


Model-based Asynchronous Hyperparameter Optimization

arXiv.org Machine Learning

We introduce a model-based asynchronous multi-fidelity hyperparameter optimization (HPO) method, combining strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization. Our method obtains substantial speed-ups in wall-clock time over, both, synchronous and asynchronous Hyperband, as well as a prior model-based extension of the former. Candidate hyperparameters to evaluate are selected by a novel jointly dependent Gaussian process-based surrogate model over all resource levels, allowing evaluations at one level to be informed by evaluations gathered at all others. We benchmark several covariance functions and conduct extensive experiments on hyperparameter tuning for multi-layer perceptrons on tabular data, convolutional networks on image classification, and recurrent networks on language modelling, demonstrating the benefits of our approach.


Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning

arXiv.org Machine Learning

Bayesian optimization (BO) is a successful methodology to optimize black-box functions that are expensive to evaluate. While traditional methods optimize each black-box function in isolation, there has been recent interest in speeding up BO by transferring knowledge across multiple related black-box functions. In this work, we introduce a method to automatically design the BO search space by relying on evaluations of previous black-box functions. We depart from the common practice of defining a set of arbitrary search ranges a priori by considering search space geometries that are learned from historical data. This simple, yet effective strategy can be used to endow many existing BO methods with transfer learning properties. Despite its simplicity, we show that our approach considerably boosts BO by reducing the size of the search space, thus accelerating the optimization of a variety of black-box optimization problems. In particular, the proposed approach combined with random search results in a parameter-free, easy-to-implement, robust hyperparameter optimization strategy. We hope it will constitute a natural baseline for further research attempting to warm-start BO.


Scalable Hyperparameter Transfer Learning

Neural Information Processing Systems

Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization, such as hyperparameter optimization. Typically, BO relies on conventional Gaussian process (GP) regression, whose algorithmic complexity is cubic in the number of evaluations. As a result, GP-based BO cannot leverage large numbers of past function evaluations, for example, to warm-start related BO runs. We propose a multi-task adaptive Bayesian linear regression model for transfer learning in BO, whose complexity is linear in the function evaluations: one Bayesian linear regression model is associated to each black-box function optimization problem (or task), while transfer learning is achieved by coupling the models through a shared deep neural net. Experiments show that the neural net learns a representation suitable for warm-starting the black-box optimization problems and that BO runs can be accelerated when the target black-box function (e.g., validation loss) is learned together with other related signals (e.g., training loss). The proposed method was found to be at least one order of magnitude faster than competing methods recently published in the literature.


Scalable Hyperparameter Transfer Learning

Neural Information Processing Systems

Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization, such as hyperparameter optimization. Typically, BO relies on conventional Gaussian process (GP) regression, whose algorithmic complexity is cubic in the number of evaluations. As a result, GPbased BO cannot leverage large numbers of past function evaluations, for example, to warm-start related BO runs. We propose a multi-task adaptive Bayesian linear regression model for transfer learning in BO, whose complexity is linear in the function evaluations: one Bayesian linear regression model is associated to each black-box function optimization problem (or task), while transfer learning is achieved by coupling the models through a shared deep neural net. Experiments show that the neural net learns a representation suitable for warm-starting the black-box optimization problems and that BO runs can be accelerated when the target black-box function (e.g., validation loss) is learned together with other related signals (e.g., training loss). The proposed method was found to be at least one order of magnitude faster than competing methods recently published in the literature.


Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start

arXiv.org Machine Learning

Bayesian optimization (BO) is a model-based approach for gradient-free black-box function optimization. Typically, BO is powered by a Gaussian process (GP), whose algorithmic complexity is cubic in the number of evaluations. Hence, GP-based BO cannot leverage large amounts of past or related function evaluations, for example, to warm start the BO procedure. We develop a multiple adaptive Bayesian linear regression model as a scalable alternative whose complexity is linear in the number of observations. The multiple Bayesian linear regression models are coupled through a shared feedforward neural network, which learns a joint representation and transfers knowledge across machine learning problems.


Online optimization and regret guarantees for non-additive long-term constraints

arXiv.org Machine Learning

We consider online optimization in the 1-lookahead setting, where the objective does not decompose additively over the rounds of the online game. The resulting formulation enables us to deal with non-stationary and/or long-term constraints , which arise, for example, in online display advertising problems. We propose an on-line primal-dual algorithm for which we obtain dynamic cumulative regret guarantees. They depend on the convexity and the smoothness of the non-additive penalty, as well as terms capturing the smoothness with which the residuals of the non-stationary and long-term constraints vary over the rounds. We conduct experiments on synthetic data to illustrate the benefits of the non-additive penalty and show vanishing regret convergence on live traffic data collected by a display advertising platform in production.


Incremental Variational Inference for Latent Dirichlet Allocation

arXiv.org Machine Learning

We introduce incremental variational inference and apply it to latent Dirichlet allocation (LDA). Incremental variational inference is inspired by incremental EM and provides an alternative to stochastic variational inference. Incremental LDA can process massive document collections, does not require to set a learning rate, converges faster to a local optimum of the variational bound and enjoys the attractive property of monotonically increasing it. We study the performance of incremental LDA on large benchmark data sets. We further introduce a stochastic approximation of incremental variational inference which extends to the asynchronous distributed setting. The resulting distributed algorithm achieves comparable performance as single host incremental variational inference, but with a significant speed-up.


Multiple Gaussian Process Models

arXiv.org Machine Learning

We consider a Gaussian process formulation of the multiple kernel learning problem. The goal is to select the convex combination of kernel matrices that best explains the data and by doing so improve the generalisation on unseen data. Sparsity in the kernel weights is obtained by adopting a hierarchical Bayesian approach: Gaussian process priors are imposed over the latent functions and generalised inverse Gaussians on their associated weights. This construction is equivalent to imposing a product of heavy-tailed process priors over function space. A variational inference algorithm is derived for regression and binary classification.