Antonucci, Alessandro
ADAPQUEST: A Software for Web-Based Adaptive Questionnaires based on Bayesian Networks
Bonesana, Claudio, Mangili, Francesca, Antonucci, Alessandro
We introduce ADAPQUEST, a software tool written in Java for the development of adaptive questionnaires based on Bayesian networks. Adaptiveness is intended here as the dynamical choice of the question sequence on the basis of an evolving model of the skill level of the test taker. Bayesian networks offer a flexible and highly interpretable framework to describe such testing process, especially when coping with multiple skills. ADAPQUEST embeds dedicated elicitation strategies to simplify the elicitation of the questionnaire parameters. An application of this tool for the diagnosis of mental disorders is also discussed together with some implementation details.
Structural Learning of Probabilistic Sentential Decision Diagrams under Partial Closed-World Assumption
Antonucci, Alessandro, Facchini, Alessandro, Mattei, Lilith
Probabilistic sentential decision diagrams are a class of structured-decomposable probabilistic circuits especially designed to embed logical constraints. To adapt the classical LearnSPN scheme to learn the structure of these models, we propose a new scheme based on a partial closed-world assumption: data implicitly provide the logical base of the circuit. Sum nodes are thus learned by recursively clustering batches in the initial data base, while the partitioning of the variables obeys a given input vtree. Preliminary experiments show that the proposed approach might properly fit training data, and generalize well to test data, provided that these remain consistent with the underlying logical base, that is a relaxation of the training data base.
Humans as Path-Finders for Safe Navigation
Antonucci, Alessandro, Bevilacqua, Paolo, Leonardi, Stefano, Palopoli, Luigi, Fontanelli, Daniele
One of the most important barriers toward a widespread use of mobile robots in unstructured and human populated work environments is the ability to plan a safe path. In this paper, we propose to delegate this activity to a human operator that walks in front of the robot marking with her/his footsteps the path to be followed. The implementation of this approach requires a high degree of robustness in locating the specific person to be followed (the leader). We propose a three phase approach to fulfil this goal: 1. identification and tracking of the person in the image space, 2. sensor fusion between camera data and laser sensors, 3. point interpolation with continuous curvature curves. The approach is described in the paper and extensively validated with experimental results.
A New Score for Adaptive Tests in Bayesian and Credal Networks
Antonucci, Alessandro, Mangili, Francesca, Bonesana, Claudio, Adorni, Giorgia
A test is adaptive when its sequence and number of questions is dynamically tuned on the basis of the estimated skills of the taker. Graphical models, such as Bayesian networks, are used for adaptive tests as they allow to model the uncertainty about the questions and the skills in an explainable fashion, especially when coping with multiple skills. A better elicitation of the uncertainty in the question/skills relations can be achieved by interval probabilities. This turns the model into a credal network, thus making more challenging the inferential complexity of the queries required to select questions. This is especially the case for the information theoretic quantities used as scores to drive the adaptive mechanism. We present an alternative family of scores, based on the mode of the posterior probabilities, and hence easier to explain. This makes considerably simpler the evaluation in the credal case, without significantly affecting the quality of the adaptive process. Numerical tests on synthetic and real-world data are used to support this claim.
CREPO: An Open Repository to Benchmark Credal Network Algorithms
Cabañas, Rafael, Antonucci, Alessandro
Credal networks are a popular class of imprecise probabilistic graphical models obtained as a Bayesian network generalization based on, so-called credal, sets of probability mass functions. A Java library called CREMA has been recently released to model, process and query credal networks. Despite the NP-hardness of the (exact) task, a number of algorithms is available to approximate credal network inferences. In this paper we present CREPO, an open repository of synthetic credal networks, provided together with the exact results of inference tasks on these models. A Python tool is also delivered to load these data and interact with CREMA, thus making extremely easy to evaluate and compare existing and novel inference algorithms. To demonstrate such benchmarking scheme, we propose an approximate heuristic to be used inside variable elimination schemes to keep a bound on the maximum number of vertices generated during the combination step. A CREPO-based validation against approximate procedures based on linearization and exact techniques performed in CREMA is finally discussed.
Relation Clustering in Narrative Knowledge Graphs
Mellace, Simone, Vani, K, Antonucci, Alessandro
When coping with literary texts such as novels or short stories, the extraction of structured information in the form of a knowledge graph might be hindered by the huge number of possible relations between the entities corresponding to the characters in the novel and the consequent hurdles in gathering supervised information about them. Such issue is addressed here as an unsupervised task empowered by transformers: relational sentences in the original text are embedded (with SBERT) and clustered in order to merge together semantically similar relations. All the sentences in the same cluster are finally summarized (with BART) and a descriptive label extracted from the summary. Preliminary tests show that such clustering might successfully detect similar relations, and provide a valuable preprocessing for semi-supervised approaches.
EM Based Bounding of Unidentifiable Queries in Structural Causal Models
Zaffalon, Marco, Antonucci, Alessandro, Cabañas, Rafael
A structural causal model is made of endogenous (manifest) and exogenous (latent) variables. In a recent paper, it has been shown that endogenous observations induce linear constraints on the probabilities of the exogenous variables. This allows to exactly map a causal model into a \emph{credal network}. Causal inferences, such as interventions and counterfactuals, can consequently be obtained by standard credal network algorithms. These natively return sharp values in the identifiable case, while intervals corresponding to the exact bounds are produced for unidentifiable queries. In this paper we present an approximate characterization of the constraints on the exogenous probabilities. This is based on a specialization of the EM algorithm to the treatment of the missing values in the exogenous observations. Multiple EM runs can be consequently used to describe the causal model as a set of Bayesian networks and, hence, a credal network to be queried for the bounding of unidentifiable queries. Preliminary empirical tests show how this approach might provide good inner bounds with relatively few runs. This is a promising direction for causal analysis in models whose topology prevents a straightforward specification of the credal mapping.
SST-BERT at SemEval-2020 Task 1: Semantic Shift Tracing by Clustering in BERT-based Embedding Spaces
Vani, K, Mitrovic, Sandra, Antonucci, Alessandro, Rinaldi, Fabio
Lexical semantic change detection (also known as semantic shift tracing) is a task of identifying words that have changed their meaning over time. Unsupervised semantic shift tracing, focal point of SemEval2020, is particularly challenging. Given the unsupervised setup, in this work, we propose to identify clusters among different occurrences of each target word, considering these as representatives of different word meanings. As such, disagreements in obtained clusters naturally allow to quantify the level of semantic shift per each target word in four target languages. To leverage this idea, clustering is performed on contextualized (BERT-based) embeddings of word occurrences. The obtained results show that our approach performs well both measured separately (per language) and overall, where we surpass all provided SemEval baselines.
Tractable Inference in Credal Sentential Decision Diagrams
Mattei, Lilith, Antonucci, Alessandro, Mauá, Denis Deratani, Facchini, Alessandro, Llerena, Julissa Villanueva
Probabilistic sentential decision diagrams are logic circuits where the inputs of disjunctive gates are annotated by probability values. They allow for a compact representation of joint probability mass functions defined over sets of Boolean variables, that are also consistent with the logical constraints defined by the circuit. The probabilities in such a model are usually learned from a set of observations. This leads to overconfident and prior-dependent inferences when data are scarce, unreliable or conflicting. In this work, we develop the credal sentential decision diagrams, a generalisation of their probabilistic counterpart that allows for replacing the local probabilities with (so-called credal) sets of mass functions. These models induce a joint credal set over the set of Boolean variables, that sharply assigns probability zero to states inconsistent with the logical constraints. Three inference algorithms are derived for these models, these allow to compute: (i) the lower and upper probabilities of an observation for an arbitrary number of variables; (ii) the lower and upper conditional probabilities for the state of a single variable given an observation; (iii) whether or not all the probabilistic sentential decision diagrams compatible with the credal specification have the same most probable explanation of a given set of variables given an observation of the other variables. These inferences are tractable, as all the three algorithms, based on bottom-up traversal with local linear programming tasks on the disjunctive gates, can be solved in polynomial time with respect to the circuit size. For a first empirical validation, we consider a simple application based on noisy seven-segment display images. The credal models are observed to properly distinguish between easy and hard-to-detect instances and outperform other generative models not able to cope with logical constraints.
Structural Causal Models Are (Solvable by) Credal Networks
Zaffalon, Marco, Antonucci, Alessandro, Cabañas, Rafael
A structural causal model is made of endogenous (manifest) and exogenous (latent) variables. We show that endogenous observations induce linear constraints on the probabilities of the exogenous variables. This allows to exactly map a causal model into a credal network. Causal inferences, such as interventions and counterfactuals, can consequently be obtained by standard algorithms for the updating of credal nets. These natively return sharp values in the identifiable case, while intervals corresponding to the exact bounds are produced for unidentifiable queries. A characterization of the causal models that allow the map above to be compactly derived is given, along with a discussion about the scalability for general models. This contribution should be regarded as a systematic approach to represent structural causal models by credal networks and hence to systematically compute causal inferences. A number of demonstrative examples is presented to clarify our methodology. Extensive experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.