Plotting

 Anonymous


Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity

Neural Information Processing Systems

Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.


Differentiable Causal Discovery from Interventional Data

Neural Information Processing Systems

Learning a causal directed acyclic graph from data is a challenging task that involves solving a combinatorial problem for which the solution is not always identifiable. A new line of work reformulates this problem as a continuous constrained optimization one, which is solved via the augmented Lagrangian method. However, most methods based on this idea do not make use of interventional data, which can significantly alleviate identifiability issues. This work constitutes a new step in this direction by proposing a theoretically-grounded method based on neural networks that can leverage interventional data. We illustrate the flexibility of the continuousconstrained framework by taking advantage of expressive neural architectures such as normalizing flows. We show that our approach compares favorably to the state of the art in a variety of settings, including perfect and imperfect interventions for which the targeted nodes may even be unknown.


Differentiable Causal Discovery from Interventional Data

Neural Information Processing Systems

Learning a causal directed acyclic graph from data is a challenging task that involves solving a combinatorial problem for which the solution is not always identifiable. A new line of work reformulates this problem as a continuous constrained optimization one, which is solved via the augmented Lagrangian method. However, most methods based on this idea do not make use of interventional data, which can significantly alleviate identifiability issues. This work constitutes a new step in this direction by proposing a theoretically-grounded method based on neural networks that can leverage interventional data. We illustrate the flexibility of the continuousconstrained framework by taking advantage of expressive neural architectures such as normalizing flows. We show that our approach compares favorably to the state of the art in a variety of settings, including perfect and imperfect interventions for which the targeted nodes may even be unknown.


Neural Injective Functions

Neural Information Processing Systems

Injective multiset functions have a key role in the theoretical study of machine learning on multisets and graphs. Yet, there remains a gap between the provably injective multiset functions considered in theory, which typically rely on polynomial moments, and the multiset functions used in practice, which rely on neural moments -- whose injectivity on multisets has not been studied to date. In this paper, we bridge this gap by showing that moments of neural networks do define injective multiset functions, provided that an analytic non-polynomial activation is used. The number of moments required by our theory is optimal essentially up to a multiplicative factor of two. To prove this result, we state and prove a finite witness theorem, which is of independent interest. As a corollary to our main theorem, we derive new approximation results for functions on multisets and measures, and new separation results for graph neural networks. We also provide two negative results: (1) moments of piecewise-linear neural networks cannot be injective multiset functions; and (2) even when momentbased multiset functions are injective, they can never be bi-Lipschitz.


Neural Injective Functions

Neural Information Processing Systems

Injective multiset functions have a key role in the theoretical study of machine learning on multisets and graphs. Yet, there remains a gap between the provably injective multiset functions considered in theory, which typically rely on polynomial moments, and the multiset functions used in practice, which rely on neural moments -- whose injectivity on multisets has not been studied to date. In this paper, we bridge this gap by showing that moments of neural networks do define injective multiset functions, provided that an analytic non-polynomial activation is used. The number of moments required by our theory is optimal essentially up to a multiplicative factor of two. To prove this result, we state and prove a finite witness theorem, which is of independent interest. As a corollary to our main theorem, we derive new approximation results for functions on multisets and measures, and new separation results for graph neural networks. We also provide two negative results: (1) moments of piecewise-linear neural networks cannot be injective multiset functions; and (2) even when momentbased multiset functions are injective, they can never be bi-Lipschitz.


Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity

Neural Information Processing Systems

Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.