Well File:

 Anna Korba


A Structured Prediction Approach for Label Ranking

Neural Information Processing Systems

We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.


A Structured Prediction Approach for Label Ranking

Neural Information Processing Systems

We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.


Maximum Mean Discrepancy Gradient Flow

Neural Information Processing Systems

We construct a Wasserstein gradient flow of the maximum mean discrepancy (MMD) and study its convergence properties. The MMD is an integral probability metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a metric on probability measures for a sufficiently rich RKHS. We obtain conditions for convergence of the gradient flow towards a global optimum, that can be related to particle transport when optimizing neural networks. We also propose a way to regularize this MMD flow, based on an injection of noise in the gradient. This algorithmic fix comes with theoretical and empirical evidence. The practical implementation of the flow is straightforward, since both the MMD and its gradient have simple closed-form expressions, which can be easily estimated with samples.


Maximum Mean Discrepancy Gradient Flow

Neural Information Processing Systems

We construct a Wasserstein gradient flow of the maximum mean discrepancy (MMD) and study its convergence properties. The MMD is an integral probability metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a metric on probability measures for a sufficiently rich RKHS. We obtain conditions for convergence of the gradient flow towards a global optimum, that can be related to particle transport when optimizing neural networks. We also propose a way to regularize this MMD flow, based on an injection of noise in the gradient. This algorithmic fix comes with theoretical and empirical evidence. The practical implementation of the flow is straightforward, since both the MMD and its gradient have simple closed-form expressions, which can be easily estimated with samples.